메뉴 건너뛰기




Volumn 12, Issue , 2013, Pages 143-153

Improved sparse multi-class SVM and its application for gene selection in cancer classification

Author keywords

Cancer classification; Classification; Microarray; Multi class SVM; Shrinkage methods; Support vector machine (SVM); Variable selection

Indexed keywords

ACCESS TO INFORMATION; ACCURACY; ARTICLE; BAYES THEOREM; CANCER CLASSIFICATION; GENE EXPRESSION; GENETIC SELECTION; HUMAN; INFORMATION PROCESSING; INTERNET; MATHEMATICAL ANALYSIS; NONLINEAR SYSTEM; SUPPORT VECTOR MACHINE;

EID: 84881281027     PISSN: None     EISSN: 11769351     Source Type: Journal    
DOI: 10.4137/CIN.S10212     Document Type: Article
Times cited : (19)

References (29)
  • 4
    • 30344438839 scopus 로고    scopus 로고
    • Gene selection using support vector machines with non-convex penalty
    • Zhang HH, Ahn J, Lin X, Park C. Gene selection using support vector machines with non-convex penalty. Bioinformatics. 2006;22:88-95.
    • (2006) Bioinformatics. , vol.22 , pp. 88-95
    • Zhang, H.H.1    Ahn, J.2    Lin, X.3    Park, C.4
  • 7
    • 2142775432 scopus 로고    scopus 로고
    • Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data
    • Lee Y, Lin Y, Wahba G. Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data. Journal of the American Statistical Association. 2004;99:465:67-81.
    • (2004) Journal of the American Statistical Association. , vol.99 , Issue.465 , pp. 67-81
    • Lee, Y.1    Lin, Y.2    Wahba, G.3
  • 8
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • Crammer K, Singer Y. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research. 2001;2:265-92.
    • (2001) Journal of Machine Learning Research. , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 11
    • 0036161259 scopus 로고    scopus 로고
    • Gene Selection for Cancer Classification using Support Vector Machines
    • Guyon I, Weston J, Barnhill S, Vapnik V. Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning. 2002; 46:389-422.
    • (2002) Machine Learning. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 13
    • 34250708395 scopus 로고    scopus 로고
    • On L1-norm multi-class support vector machines: Methodology and theory
    • Wang L, Shen X. On L1-norm multi-class support vector machines: methodology and theory. Journal of the American Statistical Association. 2007;102:583-94.
    • (2007) Journal of the American Statistical Association. , vol.102 , pp. 583-594
    • Wang, L.1    Shen, X.2
  • 14
    • 33747496466 scopus 로고    scopus 로고
    • Structured multicategory support vector machines with analysis of variance decomposition
    • Lee Y, Kim Y, Lee S, Koo J. Structured multicategory support vector machines with analysis of variance decomposition. Biometrika. 2006;93: 555-71.
    • (2006) Biometrika. , vol.93 , pp. 555-571
    • Lee, Y.1    Kim, Y.2    Lee, S.3    Koo, J.4
  • 15
    • 47749133494 scopus 로고    scopus 로고
    • Variable selection for multicategory SVM via sup-norm regularization
    • Zhang HH, Liu Y, Wu Y, Zhu J. Variable selection for multicategory SVM via sup-norm regularization. Electronic Journal of Statistics. 2008;2:149-67.
    • (2008) Electronic Journal of Statistics. , vol.2 , pp. 149-167
    • Zhang, H.H.1    Liu, Y.2    Wu, Y.3    Zhu, J.4
  • 16
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P, etal. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286:531-7.
    • (1999) Science. , vol.286 , pp. 531-557
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 17
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • 673-669
    • Khan J, Wei JS, Ringner M, etal. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine. 2001;7:673-9.
    • (2001) Nature Medicine. , vol.7
    • Khan, J.1    Wei, J.S.2    Ringner, M.3
  • 20
    • 34548151636 scopus 로고    scopus 로고
    • Adaptive-LASSO for Cox's proportional hazard model
    • Zhang HH, Lu W. Adaptive-LASSO for Cox's proportional hazard model. Biometrika. 2007;94:691-703.
    • (2007) Biometrika. , vol.94 , pp. 691-703
    • Zhang, H.H.1    Lu, W.2
  • 21
    • 34547164089 scopus 로고    scopus 로고
    • Robust regression shrinkage and consistent variable selection via the LAD-LASSO
    • Wang H, Li G, Jiang G. Robust regression shrinkage and consistent variable selection via the LAD-LASSO. Journal of Business & Economics Statistics. 2007;25:347-55.
    • (2007) Journal of Business & Economics Statistics. , vol.25 , pp. 347-355
    • Wang, H.1    Li, G.2    Jiang, G.3
  • 22
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association. 2002;97:77-87.
    • (2002) Journal of the American Statistical Association. , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 23
    • 0033639023 scopus 로고    scopus 로고
    • Identification of genes associated with the progression of adult T cell leukemia (ATL)
    • Kohno T, Moriuchi R, Katamine S, Yamada Y, Tomonaga M, T M. Identification of genes associated with the progression of adult T cell leukemia (ATL). Jpn J Cancer Res. 2000;91(11):1103-10.
    • (2000) Jpn J Cancer Res. , vol.91 , Issue.11 , pp. 1103-1110
    • Kohno, T.1    Moriuchi, R.2    Katamine, S.3    Yamada, Y.4    Tomonaga, M.5
  • 24
    • 0036073209 scopus 로고    scopus 로고
    • Difierential expression of TCL1 during pre-B-cell acute lymphoblastic leukemia progression
    • Fears S, Chakrabarti SR, Nucifora G, Rowley JD. Difierential expression of TCL1 during pre-B-cell acute lymphoblastic leukemia progression. Cancer Genet Cytogenet. 2002;135(2):110-9.
    • (2002) Cancer Genet Cytogenet. , vol.135 , Issue.2 , pp. 110-119
    • Fears, S.1    Chakrabarti, S.R.2    Nucifora, G.3    Rowley, J.D.4
  • 25
    • 63449095006 scopus 로고    scopus 로고
    • An integrated method for cancer classification and rule extraction from microarray data
    • Huang L. An integrated method for cancer classification and rule extraction from microarray data. J Biomed Sci. 24 2009;16:25.
    • (2009) J Biomed Sci , vol.24 , pp. 25
    • Huang, L.1
  • 26
    • 3142521566 scopus 로고    scopus 로고
    • Joint classifier and feature optimization for comprehensive cancer diagnosis using gene expression data
    • Krishnapuram B, Carin L, Hartemink A. Joint classifier and feature optimization for comprehensive cancer diagnosis using gene expression data. J Comput Biol. 2004;11(2-3):227-42.
    • (2004) J Comput Biol. , vol.11 , Issue.2-3 , pp. 227-242
    • Krishnapuram, B.1    Carin, L.2    Hartemink, A.3
  • 27
    • 77958142234 scopus 로고    scopus 로고
    • Mining gene expression profiles: An integrated implementation of kernel principal component analysis and singular value decomposition
    • Reverter F, Vegas E, Sanchez P. Mining gene expression profiles: an integrated implementation of kernel principal component analysis and singular value decomposition. Genomics Proteomics Bioinformatics. 2010;8(3):200-10.
    • (2010) Genomics Proteomics Bioinformatics. , vol.8 , Issue.3 , pp. 200-210
    • Reverter, F.1    Vegas, E.2    Sanchez, P.3
  • 28
    • 20544473123 scopus 로고    scopus 로고
    • A gene selection algorithm based on the gene regulation probability using maximal likelihood estimation
    • Wang H, Huang D. A gene selection algorithm based on the gene regulation probability using maximal likelihood estimation. Biotechnol Lett. 2005;27(8):597-603.
    • (2005) Biotechnol Lett. , vol.27 , Issue.8 , pp. 597-603
    • Wang, H.1    Huang, D.2
  • 29
    • 33645818761 scopus 로고    scopus 로고
    • Structured polychotomous machine diagnosis of multiple cancer types using gene expression
    • Koo JY, Sohn I, Kim S, Lee JW. Structured polychotomous machine diagnosis of multiple cancer types using gene expression. Bioinformatics. 2006;22(8):950-8.
    • (2006) Bioinformatics. , vol.22 , Issue.8 , pp. 950-998
    • Koo, J.Y.1    Sohn, I.2    Kim, S.3    Lee, J.W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.