메뉴 건너뛰기




Volumn 139, Issue , 2014, Pages 328-335

Improving mixing rate with tempered transition for learning restricted Boltzmann machines

Author keywords

Deep learning; Mixing rate; Restricted Boltzmann machines; Tempered transition

Indexed keywords

MARKOV PROCESSES; TEMPERING;

EID: 84901064273     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.02.024     Document Type: Article
Times cited : (7)

References (32)
  • 1
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G.E., Salakhutdinov R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313(5786):504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 2
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G.E., Osindero S., Teh Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18(7):1527-1554.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 5
    • 77956002520 scopus 로고    scopus 로고
    • Learning Multiple Layers of Features from Tiny Images, Master[U+05F3]s Thesis of Department of Computer Science
    • A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images, Master[U+05F3]s Thesis of Department of Computer Science, University of Toronto, 2009.
    • (2009) University of Toronto
    • Krizhevsky, A.1
  • 6
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
    • Hinton G.E., Deng L., Yu D. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 2012, 29(6):82-97.
    • (2012) IEEE Signal Process. Mag. , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.E.1    Deng, L.2    Yu, D.3
  • 11
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton G.E. Training products of experts by minimizing contrastive divergence. Neural Comput. 2002, 14(8):1771-1800.
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 16
    • 45749110924 scopus 로고    scopus 로고
    • Representational power of restricted Boltzmann machines and deep belief networks
    • Le Roux N., Bengio Y. Representational power of restricted Boltzmann machines and deep belief networks. Neural Comput. 2008, 20(6):1631-1649.
    • (2008) Neural Comput. , vol.20 , Issue.6 , pp. 1631-1649
    • Le Roux, N.1    Bengio, Y.2
  • 18
    • 21444452127 scopus 로고    scopus 로고
    • Sampling from multimodal distributions using tempered transitions
    • Neal R.M. Sampling from multimodal distributions using tempered transitions. Stat. Comput. 1996, 6(4):353-366.
    • (1996) Stat. Comput. , vol.6 , Issue.4 , pp. 353-366
    • Neal, R.M.1
  • 19
    • 0035600220 scopus 로고    scopus 로고
    • Extended ensemble Monte Carlo
    • Iba Y. Extended ensemble Monte Carlo. Int. J. Mod. Phys. C 2001, 12(5):623-656.
    • (2001) Int. J. Mod. Phys. C , vol.12 , Issue.5 , pp. 623-656
    • Iba, Y.1
  • 21
    • 35348818718 scopus 로고    scopus 로고
    • Learning multiple layers of representation
    • Hinton G.E. Learning multiple layers of representation. Trends Cogn. Sci. 2007, 11(10):428-434.
    • (2007) Trends Cogn. Sci. , vol.11 , Issue.10 , pp. 428-434
    • Hinton, G.E.1
  • 22
    • 67651049775 scopus 로고    scopus 로고
    • Justifying and generalizing contrastive divergence
    • Bengio Y., Delalleau O. Justifying and generalizing contrastive divergence. Neural Comput. 2009, 21(6):1601-1621.
    • (2009) Neural Comput. , vol.21 , Issue.6 , pp. 1601-1621
    • Bengio, Y.1    Delalleau, O.2
  • 26
    • 28844454252 scopus 로고    scopus 로고
    • Parallel tempering: theory, applications, and new perspectives
    • Earl D.J., Deem M.W. Parallel tempering: theory, applications, and new perspectives. Phys. Chem. Chem. Phys. 2005, 7:3910-3916.
    • (2005) Phys. Chem. Chem. Phys. , vol.7 , pp. 3910-3916
    • Earl, D.J.1    Deem, M.W.2
  • 30
    • 6344235947 scopus 로고    scopus 로고
    • The MNIST Database of Handwritten Digits, .
    • Y. LeCun, C. Cortes, C. Burges, The MNIST Database of Handwritten Digits,. http://yann.lecun.com/exdb/mnist/.
    • LeCun, Y.1    Cortes, C.2    Burges, C.3
  • 32
    • 84872506495 scopus 로고    scopus 로고
    • A Practical Guide to Training Restricted Boltzmann Machines, Neural Networks
    • G. Hinton, A Practical Guide to Training Restricted Boltzmann Machines, Neural Networks: Tricks of the Trade, LNCS 7700, 2012. pp. 599-619.
    • (2012) Tricks of the Trade, LNCS 7700 , pp. 599-619
    • Hinton, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.