메뉴 건너뛰기




Volumn 6, Issue 4, 2012, Pages 1588-1614

Dynamical functional prediction and classification, with application to traffic flow prediction

Author keywords

Clustering; Discrimination; Functional regression; Intelligent transportation system; Mixture model; Subspace projection; Traffic flow rate

Indexed keywords


EID: 84901049442     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/12-AOAS595     Document Type: Article
Times cited : (104)

References (56)
  • 2
    • 78649343444 scopus 로고    scopus 로고
    • Electricity consumption prediction with functional linear regression using spline estimators
    • MR2740138
    • Antoch, J., Prchal, L., De Rosa, M. R. and Sarda, P. (2010). Electricity consumption prediction with functional linear regression using spline estimators. J. Appl. Stat. 37 2027-2041. MR2740138
    • (2010) J. Appl. Stat. , vol.37 , pp. 2027-2041
    • Antoch, J.1    Prchal, L.2    De Rosa, M.R.3    Sarda, P.4
  • 3
    • 77949493051 scopus 로고    scopus 로고
    • Linguistic pitch analysis using functional principal component mixed effect models
    • MR2744475
    • Aston, J. A. D., Chiou, J.-M. and Evans, J. P. (2010). Linguistic pitch analysis using functional principal component mixed effect models. J. R. Stat. Soc. Ser. C Appl. Stat. 59 297-317. MR2744475
    • (2010) J. R. Stat. Soc. Ser. C Appl. Stat. , vol.59 , pp. 297-317
    • Aston, J.A.D.1    Chiou, J.-M.2    Evans, J.P.3
  • 4
    • 56949103478 scopus 로고    scopus 로고
    • Generative or discriminative? Getting the best of both worlds
    • In, Oxford Univ. Press, Oxford. MR2433187
    • Bishop, C. M. and Lasserre, J. (2007). Generative or discriminative? Getting the best of both worlds. In Bayesian Statistics 8 3-24. Oxford Univ. Press, Oxford. MR2433187
    • (2007) Bayesian Statistics , vol.8 , pp. 3-24
    • Bishop, C.M.1    Lasserre, J.2
  • 5
    • 78149250994 scopus 로고    scopus 로고
    • A neural network based traffic-flow prediction model
    • Çetiner, B. G., Sari, M. and Borat, O. (2010). A neural network based traffic-flow prediction model. Math. and Comput. Appl 15 269-278.
    • (2010) Math. and Comput. Appl , vol.15 , pp. 269-278
    • Çetiner, B.G.1    Sari, M.2    Borat, O.3
  • 8
    • 34547837451 scopus 로고    scopus 로고
    • Functional clustering and identifying substructures of longitudinal data
    • MR2370075
    • Chiou, J.-M. and Li, P.-L. (2007). Functional clustering and identifying substructures of longitudinal data. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 679-699. MR2370075
    • (2007) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.69 , pp. 679-699
    • Chiou, J.-M.1    Li, P.-L.2
  • 9
    • 77949530699 scopus 로고    scopus 로고
    • Correlation-based functional clustering via subspace projection
    • MR2724685
    • Chiou, J.-M. and Li, P.-L. (2008). Correlation-based functional clustering via subspace projection. J. Amer. Statist. Assoc. 103 1684-1692. MR2724685
    • (2008) J. Amer. Statist. Assoc. , vol.103 , pp. 1684-1692
    • Chiou, J.-M.1    Li, P.-L.2
  • 10
    • 0038446322 scopus 로고    scopus 로고
    • Functional quasi-likelihood regression models with smooth random effects
    • MR1983755
    • Chiou, J.-M., Müller, H.-G. and Wang, J.-L. (2003). Functional quasi-likelihood regression models with smooth random effects. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 405-423. MR1983755
    • (2003) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.65 , pp. 405-423
    • Chiou, J.-M.1    Müller, H.-G.2    Wang, J.-L.3
  • 11
    • 34247400715 scopus 로고    scopus 로고
    • Diagnostics for functional regression via residual processes
    • MR2364544
    • Chiou, J.-M. and Müller, H.-G. (2007). Diagnostics for functional regression via residual processes. Comput. Statist. Data Anal. 51 4849-4863. MR2364544
    • (2007) Comput. Statist. Data Anal. , vol.51 , pp. 4849-4863
    • Chiou, J.-M.1    Müller, H.-G.2
  • 12
    • 66549091332 scopus 로고    scopus 로고
    • Modeling hazard rates as functional data for the analysis of cohort lifetables and mortality forecasting
    • MR2751439
    • Chiou, J.-M. andMüller, H.-G. (2009). Modeling hazard rates as functional data for the analysis of cohort lifetables and mortality forecasting. J. Amer. Statist. Assoc. 104 572-585. MR2751439
    • (2009) J. Amer. Statist. Assoc. , vol.104 , pp. 572-585
    • Chiou, J.-M.1    Müller, H.-G.2
  • 13
    • 79958115655 scopus 로고    scopus 로고
    • Analyzing time-course microarray data using functional data analysis-a review
    • Art. 23, 34. MR2800687
    • Coffey, N. and Hinde, J. (2011). Analyzing time-course microarray data using functional data analysis-a review. Stat. Appl. Genet. Mol. Biol. 10 Art. 23, 34. MR2800687
    • (2011) Stat. Appl. Genet. Mol. Biol. , vol.10
    • Coffey, N.1    Hinde, J.2
  • 14
    • 36049026510 scopus 로고    scopus 로고
    • Robust estimation and classification for functional data via projection-based depth notions
    • MR2336349
    • Cuevas, A., Febrero, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Comput. Statist. 22 481-496. MR2336349
    • (2007) Comput. Statist. , vol.22 , pp. 481-496
    • Cuevas, A.1    Febrero, M.2    Fraiman, R.3
  • 15
    • 84873367307 scopus 로고    scopus 로고
    • The mortality of the Italian population: Smoothing techniques on the Lee-Carter model
    • MR2840172
    • D'Amato, V., Piscopo, G. and Russolillo, M. (2011). The mortality of the Italian population: Smoothing techniques on the Lee-Carter model. Ann. Appl. Stat. 5 705-724. MR2840172
    • (2011) Ann. Appl. Stat. , vol.5 , pp. 705-724
    • D'Amato, V.1    Piscopo, G.2    Russolillo, M.3
  • 16
    • 0017094666 scopus 로고
    • Properties of diagnostic data distributions
    • Dawid, A. P. (1976). Properties of diagnostic data distributions. Biometrics 32 647-658.
    • (1976) Biometrics , vol.32 , pp. 647-658
    • Dawid, A.P.1
  • 17
  • 20
    • 43849090983 scopus 로고    scopus 로고
    • Using functional data analysis of diurnal ozone and NOx cycles to inform transportation emissions control
    • Gao, H. O. and Niemeier, D. A. (2008). Using functional data analysis of diurnal ozone and NOx cycles to inform transportation emissions control. Transportation Research Part D: Transport and Environment 13 221-238.
    • (2008) Transportation Research Part D: Transport and Environment , vol.13 , pp. 221-238
    • Gao, H.O.1    Niemeier, D.A.2
  • 21
    • 40549093626 scopus 로고    scopus 로고
    • Editorial: Probabilistic forecasting
    • MR2427336
    • Gneiting, T. (2008). Editorial: Probabilistic forecasting. J. Roy. Statist. Soc. Ser. A 171 319-321. MR2427336
    • (2008) J. Roy. Statist. Soc. Ser. A , vol.171 , pp. 319-321
    • Gneiting, T.1
  • 22
    • 33750436765 scopus 로고    scopus 로고
    • Robust forecasting of mortality and fertility rates: A functional data approach
    • MR2364551
    • Hyndman, R. J. and Shahid Ullah, M. (2007). Robust forecasting of mortality and fertility rates: A functional data approach. Comput. Statist. Data Anal. 51 4942-4956. MR2364551
    • (2007) Comput. Statist. Data Anal. , vol.51 , pp. 4942-4956
    • Hyndman, R.J.1    Shahid Ullah, M.2
  • 23
    • 0043245795 scopus 로고    scopus 로고
    • Clustering for sparsely sampled functional data
    • MR1995716
    • James, G. M. and Sugar, C. A. (2003). Clustering for sparsely sampled functional data. J. Amer. Statist. Assoc. 98 397-408. MR1995716
    • (2003) J. Amer. Statist. Assoc. , vol.98 , pp. 397-408
    • James, G.M.1    Sugar, C.A.2
  • 24
    • 84865143932 scopus 로고    scopus 로고
    • Real-time road traffic forecasting using regime-switching space-time models and adaptive LASSO (with discussion)
    • Kamarianakis, Y., Shen, W. andWynter, L. (2012). Real-time road traffic forecasting using regime-switching space-time models and adaptive LASSO (with discussion). Appl. Stoch. Models Bus. Ind. 28 297-323.
    • (2012) Appl. Stoch. Models Bus. Ind. , vol.28 , pp. 297-323
    • Kamarianakis, Y.1    Shen, W.2    Wynter, L.3
  • 25
    • 0031092111 scopus 로고    scopus 로고
    • Should we use neural networks or statistical models for short-term motorway traffic forecasting?
    • Kirby, H. R., Waston, S. M. and Dougherty, M. S. (1997). Should we use neural networks or statistical models for short-term motorway traffic forecasting? Int. J. Forecasting 13 43-50.
    • (1997) Int. J. Forecasting , vol.13 , pp. 43-50
    • Kirby, H.R.1    Waston, S.M.2    Dougherty, M.S.3
  • 26
    • 79952041391 scopus 로고    scopus 로고
    • Identifying cluster number for subspace projected functional data clustering
    • MR2785116
    • Li, P.-L. and Chiou, J.-M. (2011). Identifying cluster number for subspace projected functional data clustering. Comput. Statist. Data Anal. 55 2090-2103. MR2785116
    • (2011) Comput. Statist. Data Anal. , vol.55 , pp. 2090-2103
    • Li, P.-L.1    Chiou, J.-M.2
  • 27
    • 55149112607 scopus 로고    scopus 로고
    • Depth-based classification for functional data. In Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications (R. Liu, R. Serfling and D. L. Souvaine, eds.)
    • Amer. Math. Soc., Providence, RI. MR2343116
    • López-Pintado, S. and Romo, J. (2006). Depth-based classification for functional data. In Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications (R. Liu, R. Serfling and D. L. Souvaine, eds.). DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 72 103-119. Amer. Math. Soc., Providence, RI. MR2343116
    • (2006) DIMACS Ser. Discrete Math. Theoret. Comput. Sci. , vol.72 , pp. 103-119
    • López-Pintado, S.1    Romo, J.2
  • 28
    • 49549108208 scopus 로고    scopus 로고
    • Penalized clustering of large-scale functional data with multiple covariates
    • MR2435467
    • Ma, P. and Zhong, W. (2008). Penalized clustering of large-scale functional data with multiple covariates. J. Amer. Statist. Assoc. 103 625-636. MR2435467
    • (2008) J. Amer. Statist. Assoc. , vol.103 , pp. 625-636
    • Ma, P.1    Zhong, W.2
  • 30
    • 19744371683 scopus 로고    scopus 로고
    • Functional modelling and classification of longitudinal data
    • MR2188671
    • Müller, H.-G. (2005). Functional modelling and classification of longitudinal data. Scand. J. Stat. 32 223-246. MR2188671
    • (2005) Scand. J. Stat. , vol.32 , pp. 223-246
    • Müller, H.-G.1
  • 31
    • 85057445672 scopus 로고    scopus 로고
    • Functional modeling of longitudinal data
    • In (G. Fitzmaurice, M. Davidian, G. Verbeke and G. Molenberghs, eds.), CRC Press, Boca Raton, FL. MR1500120
    • Müller, H.-G. (2009). Functional modeling of longitudinal data. In Longitudinal Data Analysis (G. Fitzmaurice, M. Davidian, G. Verbeke and G. Molenberghs, eds.) 223-251. CRC Press, Boca Raton, FL. MR1500120
    • (2009) Longitudinal Data Analysis , pp. 223-251
    • Müller, H.-G.1
  • 32
    • 42949111568 scopus 로고    scopus 로고
    • Inferring gene expression dynamics via functional regression analysis
    • Müller, H.-G., Chiou, J.-M. and Leng, X. (2008). Inferring gene expression dynamics via functional regression analysis. BMC Bioinformatics 9 60.
    • (2008) BMC Bioinformatics , vol.9 , pp. 60
    • Müller, H.-G.1    Chiou, J.-M.2    Leng, X.3
  • 33
    • 19744368468 scopus 로고    scopus 로고
    • Time-varying functional regression for predicting remaining lifetime distributions from longitudinal trajectories
    • MR2216200
    • Müller, H.-G. and Zhang, Y. (2005). Time-varying functional regression for predicting remaining lifetime distributions from longitudinal trajectories. Biometrics 61 1064-1075. MR2216200
    • (2005) Biometrics , vol.61 , pp. 1064-1075
    • Müller, H.-G.1    Zhang, Y.2
  • 34
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. generative classifier: A comparison of logistic regression and naive Bayes
    • Ng, A. Y. and Jordan, M. I. (2002). On discriminative vs. generative classifier: A comparison of logistic regression and naive Bayes. Neural Information Processing System 2 841-848.
    • (2002) Neural Information Processing System , vol.2 , pp. 841-848
    • Ng, A.Y.1    Jordan, M.I.2
  • 36
    • 0001501999 scopus 로고
    • Some tools for functional data analysis
    • MR1125714
    • Ramsay, J. O. and Dalzell, C. J. (1991). Some tools for functional data analysis. J. Roy. Statist. Soc. Ser. B 53 539-572. MR1125714
    • (1991) J. Roy. Statist. Soc. Ser. B , vol.53 , pp. 539-572
    • Ramsay, J.O.1    Dalzell, C.J.2
  • 39
    • 8644231058 scopus 로고    scopus 로고
    • Functional and longitudinal data analysis: Perspectives on smoothing
    • MR2087966
    • Rice, J. A. (2004). Functional and longitudinal data analysis: Perspectives on smoothing. Statist. Sinica 14 631-647. MR2087966
    • (2004) Statist. Sinica , vol.14 , pp. 631-647
    • Rice, J.A.1
  • 40
    • 78649433292 scopus 로고    scopus 로고
    • Functional varying coefficient models for longitudinal data
    • Sentürk, D. and Müller, H.-G. (2010). Functional varying coefficient models for longitudinal data. J. Amer. Statist. Assoc. 105 1256-1264.
    • (2010) J. Amer. Statist. Assoc. , vol.105 , pp. 1256-1264
    • Sentürk, D.1    Müller, H.-G.2
  • 41
    • 24644447890 scopus 로고    scopus 로고
    • CATS: Clustering after transformation and smoothing
    • MR2201025
    • Serban, N. and Wasserman, L. (2005). CATS: Clustering after transformation and smoothing. J. Amer. Statist. Assoc. 100 990-999. MR2201025
    • (2005) J. Amer. Statist. Assoc. , vol.100 , pp. 990-999
    • Serban, N.1    Wasserman, L.2
  • 45
    • 1642263251 scopus 로고    scopus 로고
    • Use of local linear regression model for short-term traffic forecasting
    • Sun, H., Liu, H. X., Xiao, H., He, R. R. and Ran, B. (2003). Use of local linear regression model for short-term traffic forecasting. Transportation Research Record 1836 143-150.
    • (2003) Transportation Research Record , vol.1836 , pp. 143-150
    • Sun, H.1    Liu, H.X.2    Xiao, H.3    He, R.R.4    Ran, B.5
  • 47
    • 0344944192 scopus 로고    scopus 로고
    • Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results
    • Williams, B. M. and Hoel, L. A. (2003). Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results. Journal of Transportation Engineering 129 664-672.
    • (2003) Journal of Transportation Engineering , vol.129 , pp. 664-672
    • Williams, B.M.1    Hoel, L.A.2
  • 48
    • 34249030515 scopus 로고    scopus 로고
    • Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition
    • Xie, Y., Zhang, Y. and Ye, Z. (2007). Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition. Computer-Aided Civil and Infrastructure Engineering 22 326-334.
    • (2007) Computer-Aided Civil and Infrastructure Engineering , vol.22 , pp. 326-334
    • Xie, Y.1    Zhang, Y.2    Ye, Z.3
  • 49
    • 55849114874 scopus 로고    scopus 로고
    • Comment on "On discriminative vs. generative classifier: A comparison of logistic regression and naive Bayes"
    • Xue, J. H. and Titterington, D. M. (2008). Comment on "On discriminative vs. generative classifier: A comparison of logistic regression and naive Bayes. " Neural Process Letters 28 169-187.
    • (2008) Neural Process Letters , vol.28 , pp. 169-187
    • Xue, J.H.1    Titterington, D.M.2
  • 50
    • 19744375466 scopus 로고    scopus 로고
    • Functional data analysis for sparse longitudinal data
    • MR2160561
    • Yao, F., Müller, H.-G. andWang, J.-L. (2005a). Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc. 100 577-590. MR2160561
    • (2005) J. Amer. Statist. Assoc. , vol.100 , pp. 577-590
    • Yao, F.1    Müller, H.-G.2    Wang, J.-L.3
  • 51
    • 19744369661 scopus 로고    scopus 로고
    • Functional linear regression analysis for longitudinal data
    • MR2253106
    • Yao, F., Müller, H.-G. andWang, J.-L. (2005b). Functional linear regression analysis for longitudinal data. Ann. Statist. 33 2873-2903. MR2253106
    • (2005) Ann. Statist. , vol.33 , pp. 2873-2903
    • Yao, F.1    Müller, H.-G.2    Wang, J.-L.3
  • 53
    • 49249101709 scopus 로고    scopus 로고
    • Short-term traffic flow forecasting using fuzzy logic system methods
    • Zhang, Y. andYe, Z. (2008). Short-term traffic flow forecasting using fuzzy logic system methods. Journal of Intelligent Transportation System 12 102-112.
    • (2008) Journal of Intelligent Transportation System , vol.12 , pp. 102-112
    • Zhang, Y.1    Ye, Z.2
  • 54
    • 8644276476 scopus 로고    scopus 로고
    • The functional data analysis view of longitudinal data
    • MR2087973
    • Zhao, X., Marron, J. S. andWells, M. T. (2004). The functional data analysis view of longitudinal data. Statist. Sinica 14 789-808. MR2087973
    • (2004) Statist. Sinica , vol.14 , pp. 789-808
    • Zhao, X.1    Marron, J.S.2    Wells, M.T.3
  • 55
    • 31044437283 scopus 로고    scopus 로고
    • Short-term freeway traffic prediction: Bayesian combined neural network approach
    • Zheng, W., Lee, D. H. and Shi, Q. (2006). Short-term freeway traffic prediction: Bayesian combined neural network approach. Journal of Transportation Engineering 132 114-121.
    • (2006) Journal of Transportation Engineering , vol.132 , pp. 114-121
    • Zheng, W.1    Lee, D.H.2    Shi, Q.3
  • 56
    • 84862896155 scopus 로고    scopus 로고
    • Degradation modeling applied to residual lifetime prediction using functional data analysis
    • MR2849787
    • Zhou, R. R., Serban, N. and Gebraeel, N. (2011). Degradation modeling applied to residual lifetime prediction using functional data analysis. Ann. Appl. Stat. 5 1586-1610. MR2849787
    • (2011) Ann. Appl. Stat. , vol.5 , pp. 1586-1610
    • Zhou, R.R.1    Serban, N.2    Gebraeel, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.