메뉴 건너뛰기




Volumn 55, Issue 6, 2011, Pages 2090-2103

Identifying cluster number for subspace projected functional data clustering

Author keywords

Bootstrapping; Cluster analysis; Functional data analysis; Functional principal components; Gene expression profiles; Hypothesis test

Indexed keywords

BOOTSTRAPPING; FUNCTIONAL DATA ANALYSIS; GENE EXPRESSION PROFILES; HYPOTHESIS TEST; PRINCIPAL COMPONENTS;

EID: 79952041391     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2011.01.001     Document Type: Article
Times cited : (23)

References (37)
  • 3
    • 84972893020 scopus 로고
    • A dendrite method for cluster analysis
    • T. Caliski, and J. Harabasz A dendrite method for cluster analysis Commun. Stat. 3 1974 1 27
    • (1974) Commun. Stat. , vol.3 , pp. 1-27
    • Caliski, T.1    Harabasz, J.2
  • 4
    • 34547837451 scopus 로고    scopus 로고
    • Functional clustering and identifying substructures of longitudinal data
    • J.-M. Chiou, and P.-L. Li Functional clustering and identifying substructures of longitudinal data J. R. Stat. Soc. Ser. B 69 2007 679 699
    • (2007) J. R. Stat. Soc. Ser. B , vol.69 , pp. 679-699
    • Chiou, J.-M.1    Li, P.-L.2
  • 5
    • 77949530699 scopus 로고    scopus 로고
    • Correlation-based functional clustering via subspace projection
    • J.-M. Chiou, and P.-L. Li Correlation-based functional clustering via subspace projection J. Amer. Statist. Assoc. 103 2008 1684 1692
    • (2008) J. Amer. Statist. Assoc. , vol.103 , pp. 1684-1692
    • Chiou, J.-M.1    Li, P.-L.2
  • 6
    • 36049026510 scopus 로고    scopus 로고
    • Robust estimation and classification for functional data via projection-based depth notions
    • A. Cuevas, M. Febrero, and R. Fraiman Robust estimation and classification for functional data via projection-based depth notions Comput. Statist. 22 2007 481 496
    • (2007) Comput. Statist. , vol.22 , pp. 481-496
    • Cuevas, A.1    Febrero, M.2    Fraiman, R.3
  • 10
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • C. Fraley, and A.E. Raftery How many clusters? Which clustering method? Answers via model-based cluster analysis Comput. J. 41 1998 578 588
    • (1998) Comput. J. , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 11
    • 33744726447 scopus 로고    scopus 로고
    • A proposal for robust curve clustering
    • DOI 10.1007/s00357-005-0013-8
    • L.A. Garca-Escudero, and A. Gordaliza A proposal for robust curve clustering J. Classification 22 2005 185 201 (Pubitemid 43822954)
    • (2005) Journal of Classification , vol.22 , Issue.2 , pp. 185-201
    • Garcia-Escudero, L.A.1    Gordaliza, A.2
  • 12
    • 0004241258 scopus 로고    scopus 로고
    • 2nd ed. Chapman and Hall/CRC London
    • A.D. Gordon Classification 2nd ed. 1999 Chapman and Hall/CRC London
    • (1999) Classification
    • Gordon, A.D.1
  • 18
    • 0023905024 scopus 로고
    • A criterion for determining the number of groups in a data set using sum-of-squares clustering
    • W.J. Krzanowski, and Y.T. Lai A criterion for determining the number of groups in a data set using sum-of-squares clustering Biometrics 44 1988 23 34
    • (1988) Biometrics , vol.44 , pp. 23-34
    • Krzanowski, W.J.1    Lai, Y.T.2
  • 19
    • 58549098884 scopus 로고    scopus 로고
    • Simultaneous curve registration and clustering for functional data
    • X. Liu, and M.C.K. Yang Simultaneous curve registration and clustering for functional data Comput. Statist. Data Anal. 53 2009 1361 1376
    • (2009) Comput. Statist. Data Anal. , vol.53 , pp. 1361-1376
    • Liu, X.1    Yang, M.C.K.2
  • 21
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using a mixed-effects model with B-splines
    • DOI 10.1093/bioinformatics/btg014
    • Y. Luan, and H. Li Clustering of time-course gene expression data using a mixed-effects model with B-splines Bioinformatics 19 2003 474 482 (Pubitemid 36336513)
    • (2003) Bioinformatics , vol.19 , Issue.4 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 22
    • 49549108208 scopus 로고    scopus 로고
    • Penalized clustering of large-scale functional data with multiple covariates
    • P. Ma, and W. Zhong Penalized clustering of large-scale functional data with multiple covariates J. Amer. Statist. Assoc. 103 2008 625 636
    • (2008) J. Amer. Statist. Assoc. , vol.103 , pp. 625-636
    • Ma, P.1    Zhong, W.2
  • 23
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • G.W. Milligan, and M.C. Cooper An examination of procedures for determining the number of clusters in a data set Psychometrika 50 1985 159 179
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 25
    • 0001597980 scopus 로고
    • Estimating the mean and covariance structure nonparametrically when the data are curves
    • J.A. Rice, and B.W. Silverman Estimating the mean and covariance structure nonparametrically when the data are curves J. R. Stat. Soc. Ser. B 53 1991 233 243
    • (1991) J. R. Stat. Soc. Ser. B , vol.53 , pp. 233-243
    • Rice, J.A.1    Silverman, B.W.2
  • 26
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • P.J. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis J. Comput. Appl. Math. 20 1987 53 65
    • (1987) J. Comput. Appl. Math. , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 28
  • 29
    • 0242679438 scopus 로고    scopus 로고
    • Finding the Number of Clusters in a Dataset: An Information-Theoretic Approach
    • DOI 10.1198/016214503000000666
    • C.A. Sugar, and G.M. James Finding the number of clusters in a dataset: an information-theoretic approach J. Amer. Statist. Assoc. 98 2003 750 763 (Pubitemid 37395947)
    • (2003) Journal of the American Statistical Association , vol.98 , Issue.463 , pp. 750-763
    • Sugar, C.A.1    James, G.M.2
  • 30
    • 57749101466 scopus 로고    scopus 로고
    • Time-synchronized clustering of gene expression trajectories
    • DOI 10.1093/biostatistics/kxn011
    • R. Tang, and H.G. Müller Time-synchronized clustering of gene expression trajectories Biostatistics 10 2009 32 45 (Pubitemid 352847904)
    • (2009) Biostatistics , vol.10 , Issue.1 , pp. 32-45
    • Tang, R.1    Muller, H.-G.2
  • 31
    • 33846861301 scopus 로고    scopus 로고
    • Linear transformations and the k-means clustering algorithm: Applications to clustering curves
    • T. Tarpey Linear transformations and the k-means clustering algorithm: applications to clustering curves Amer. Statist. 61 2007 34 40
    • (2007) Amer. Statist. , vol.61 , pp. 34-40
    • Tarpey, T.1
  • 33
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a data set via the gap statistic
    • R. Tibshirani, G. Walther, and T. Hastie Estimating the number of clusters in a data set via the gap statistic J. R. Stat. Soc. Ser. B 63 2001 411 423
    • (2001) J. R. Stat. Soc. Ser. B , vol.63 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 34
    • 36749055295 scopus 로고    scopus 로고
    • Determining the number of clusters using the weighted gap statistic
    • DOI 10.1111/j.1541-0420.2007.00784.x
    • M. Yan, and K. Ye Determining the number of clusters using the weighted gap statistic Biometrics 63 2007 1031 1037 (Pubitemid 350212562)
    • (2007) Biometrics , vol.63 , Issue.4 , pp. 1031-1037
    • Yan, M.1    Ye, K.2
  • 35
    • 0041332955 scopus 로고    scopus 로고
    • Shrinkage estimation for functional principal component scores with application to the population kinetics of plasma folate
    • DOI 10.1111/1541-0420.00078
    • F. Yao, H.G. Müller, A.J. Clifford, S.R. Dueker, J. Follett, Y. Lin, B.A. Buchholz, and J.S. Vogel Shrinkage estimation for functional principal component scores with application to the population kinetics of plasma folate Biometrics 59 2003 676 685 (Pubitemid 37093407)
    • (2003) Biometrics , vol.59 , Issue.3 , pp. 676-685
    • Yao, F.1    Muller, H.-G.2    Clifford, A.J.3    Dueker, S.R.4    Follett, J.5    Lin, Y.6    Buchholz, B.A.7    Vogel, J.S.8
  • 37
    • 33644639875 scopus 로고    scopus 로고
    • A novel HMM-based clustering algorithm for the analysis of gene expression time-course data
    • DOI 10.1016/j.csda.2005.07.007, PII S0167947305001544, Statistical Signal Extracting and Filtering
    • Y. Zeng, and J. Garcia-Frias A novel HMM-based clustering algorithm for the analysis of gene expression time-course data Comput. Statist. Data Anal. 50 2006 2472 2494 (Pubitemid 43326113)
    • (2006) Computational Statistics and Data Analysis , vol.50 , Issue.9 , pp. 2472-2494
    • Zeng, Y.1    Garcia-Frias, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.