메뉴 건너뛰기




Volumn 139, Issue , 2014, Pages 130-137

Semi-supervised classification with pairwise constraints

Author keywords

Pairwise constraints; Semi supervised learning; Smoothness regularizer

Indexed keywords

ALGORITHMS; HARMONIC FUNCTIONS;

EID: 84901040288     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.02.053     Document Type: Article
Times cited : (21)

References (39)
  • 1
    • 77951252234 scopus 로고    scopus 로고
    • Introduction to Semi-Supervised Learning
    • X. Zhu, B. Goldberg, Introduction to Semi-Supervised Learning, 2009.
    • (2009)
    • Zhu, X.1    Goldberg, B.2
  • 2
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines,
    • Proceedings of the International Conference on Machine Learning
    • T. Joachims, Transductive inference for text classification using support vector machines, in: Proceedings of the International Conference on Machine Learning, 1999, pp. 200-209.
    • (1999) , pp. 200-209
    • Joachims, T.1
  • 3
    • 84860231071 scopus 로고    scopus 로고
    • A multiple kernel framework for inductive semi-supervised SVM learning
    • Tian X., Gasso G., Canu S. A multiple kernel framework for inductive semi-supervised SVM learning. Neurocomputing 2012, 90:46-58.
    • (2012) Neurocomputing , vol.90 , pp. 46-58
    • Tian, X.1    Gasso, G.2    Canu, S.3
  • 4
    • 0036454664 scopus 로고    scopus 로고
    • Semi-supervised support vector machines for unlabeled data classification
    • Fung G., Mangasarian O. Semi-supervised support vector machines for unlabeled data classification. Optim. Methods Softw. 2001, 15:29-44.
    • (2001) Optim. Methods Softw. , vol.15 , pp. 29-44
    • Fung, G.1    Mangasarian, O.2
  • 5
    • 79953810586 scopus 로고    scopus 로고
    • Structural regularized support vector machine. a framework for structural large margin classifier
    • Xue H., Chen S., Yang Q. Structural regularized support vector machine. a framework for structural large margin classifier. IEEE Trans. Neural Netw. 2011, 22(4):573-587.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.4 , pp. 573-587
    • Xue, H.1    Chen, S.2    Yang, Q.3
  • 6
    • 80053450016 scopus 로고    scopus 로고
    • Towards making unlabeled data never hurt
    • Proceedings of the International Conference on Machine Learning
    • Y. Li, Z. Zhou, Towards making unlabeled data never hurt, in: Proceedings of the International Conference on Machine Learning, 2011, pp. 1081-1088.
    • (2011) , pp. 1081-1088
    • Li, Y.1    Zhou, Z.2
  • 7
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • Proceedings of the International Conference on Machine Learning, Washington, DC, USA
    • X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using Gaussian fields and harmonic functions, in: Proceedings of the International Conference on Machine Learning, Washington, DC, USA, 2003, pp. 912-919.
    • (2003) , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 8
    • 3142681478 scopus 로고    scopus 로고
    • Learning with local and global consistency
    • Advances in Neural Information Processing Systems, Vancouver, Canada
    • D. Zhou, O. Bousquet, Learning with local and global consistency, in: Advances in Neural Information Processing Systems, Vancouver, Canada, 2003, pp. 321-328.
    • (2003) , pp. 321-328
    • Zhou, D.1    Bousquet, O.2
  • 9
    • 1942484960 scopus 로고    scopus 로고
    • Transductive learning via spectral graph partitioning
    • Proceedings of the International Conference on Machine Learning
    • T. Joachims, Transductive learning via spectral graph partitioning, in: Proceedings of the International Conference on Machine Learning, 2003, pp. 290-297.
    • (2003) , pp. 290-297
    • Joachims, T.1
  • 11
    • 84884922012 scopus 로고    scopus 로고
    • Multiview vector-valued manifold regularization for multilabel image classification
    • Luo Y., Tao D., Xu C., Liu H., Wen Y. Multiview vector-valued manifold regularization for multilabel image classification. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24:709-722.
    • (2013) IEEE Trans. Neural Netw. Learn. Syst. , vol.24 , pp. 709-722
    • Luo, Y.1    Tao, D.2    Xu, C.3    Liu, H.4    Wen, Y.5
  • 12
    • 84872258670 scopus 로고    scopus 로고
    • Manifold regularized multi-task learning for semi-supervised multi-label image classification
    • Luo Y., Tao D., Geng B., Xu C., Maybank S. Manifold regularized multi-task learning for semi-supervised multi-label image classification. IEEE Trans. Image Process. 2013, 22:523-536.
    • (2013) IEEE Trans. Image Process. , vol.22 , pp. 523-536
    • Luo, Y.1    Tao, D.2    Geng, B.3    Xu, C.4    Maybank, S.5
  • 13
    • 77956555216 scopus 로고    scopus 로고
    • Large graph construction for scalable semi-supervised learning
    • Proceedings of the International Conference on Machine Learning, Haifa, Israel
    • W. Liu, J. He, S. Chang, Large graph construction for scalable semi-supervised learning, in: Proceedings of the International Conference on Machine Learning, Haifa, Israel, 2010, pp. 679-686.
    • (2010) , pp. 679-686
    • Liu, W.1    He, J.2    Chang, S.3
  • 14
    • 56449085512 scopus 로고    scopus 로고
    • Graph transduction via alternating minimization
    • Proceedings of the International Conference on Machine Learning, Helsinki, Finland
    • J. Wang, T. Jebara, S. Chang, Graph transduction via alternating minimization, in: Proceedings of the International Conference on Machine Learning, Helsinki, Finland, 2008, pp. 1144-1151.
    • (2008) , pp. 1144-1151
    • Wang, J.1    Jebara, T.2    Chang, S.3
  • 15
    • 84865334921 scopus 로고    scopus 로고
    • Label propagation through sparse neighborhood and its applications
    • Zang F., Zhang J. Label propagation through sparse neighborhood and its applications. Neurocomputing 2012, 97:267-277.
    • (2012) Neurocomputing , vol.97 , pp. 267-277
    • Zang, F.1    Zhang, J.2
  • 16
    • 84862575703 scopus 로고    scopus 로고
    • Adaptive hypergraph learning and its application in image classification
    • Yu J., Tao D., Wang M. Adaptive hypergraph learning and its application in image classification. IEEE Trans. Image Process. 2012, 21(7):3262-3272.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.7 , pp. 3262-3272
    • Yu, J.1    Tao, D.2    Wang, M.3
  • 18
    • 84881235511 scopus 로고    scopus 로고
    • Multi-view hypergraph learning by patch alignment framework
    • Hong C., Yu J., Li J., Chen X. Multi-view hypergraph learning by patch alignment framework. Neurocomputing 2013, 118(22):79-86.
    • (2013) Neurocomputing , vol.118 , Issue.22 , pp. 79-86
    • Hong, C.1    Yu, J.2    Li, J.3    Chen, X.4
  • 20
    • 77949267074 scopus 로고    scopus 로고
    • Kernel-based metric learning for semi-supervised clustering
    • Soleymani B., Bagheri S. Kernel-based metric learning for semi-supervised clustering. Neurocomputing 2010, 73(7):1352-1361.
    • (2010) Neurocomputing , vol.73 , Issue.7 , pp. 1352-1361
    • Soleymani, B.1    Bagheri, S.2
  • 21
    • 79956106285 scopus 로고    scopus 로고
    • Learning low-rank kernel matrices for constrained clustering
    • Baghshah M., Shouraki S. Learning low-rank kernel matrices for constrained clustering. Neurocomputing 2011, 74(12):2201-2211.
    • (2011) Neurocomputing , vol.74 , Issue.12 , pp. 2201-2211
    • Baghshah, M.1    Shouraki, S.2
  • 22
    • 80054823948 scopus 로고    scopus 로고
    • Complex object correspondence construction in two-dimensional animation
    • Yu J., Liu D., Tao D., Seah H. Complex object correspondence construction in two-dimensional animation. IEEE Trans. Image Process. 2011, 20(11):3257-3269.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.11 , pp. 3257-3269
    • Yu, J.1    Liu, D.2    Tao, D.3    Seah, H.4
  • 23
    • 84867403981 scopus 로고    scopus 로고
    • Pairwise constraints based multiview features fusion for scene classification
    • Yu J., Tao D., Rui Y., Cheng J. Pairwise constraints based multiview features fusion for scene classification. Pattern Recognit. 2013, 46(2):483-496.
    • (2013) Pattern Recognit. , vol.46 , Issue.2 , pp. 483-496
    • Yu, J.1    Tao, D.2    Rui, Y.3    Cheng, J.4
  • 24
    • 77958567830 scopus 로고    scopus 로고
    • Constrained metric learning via distance gap maximization
    • in: The AAAI Conference on Artificial Intelligence (AAAI), Atlanta, USA
    • W. Liu, X. Tian, D. Tao, Constrained metric learning via distance gap maximization, in: The AAAI Conference on Artificial Intelligence (AAAI), Atlanta, USA, 2010.
    • (2010)
    • Liu, W.1    Tian, X.2    Tao, D.3
  • 25
    • 84867403495 scopus 로고    scopus 로고
    • Semi-supervised multiview distance metric learning for cartoon synthesis
    • Yu J., Wang M., Tao D. Semi-supervised multiview distance metric learning for cartoon synthesis. IEEE Trans. Image Process. 2012, 21(11):4636-4648.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.11 , pp. 4636-4648
    • Yu, J.1    Wang, M.2    Tao, D.3
  • 26
    • 79951767220 scopus 로고    scopus 로고
    • Dissimilarity in graph-based semi-supervised classification
    • International Conference on Artificial Intelligence and Statistics
    • A. Goldberg, Z. Zhu, S. Wright, Dissimilarity in graph-based semi-supervised classification, in: International Conference on Artificial Intelligence and Statistics, 2007, pp. 155-162.
    • (2007) , pp. 155-162
    • Goldberg, A.1    Zhu, Z.2    Wright, S.3
  • 27
    • 71149102018 scopus 로고    scopus 로고
    • Graph construction and b-matching for semi-supervised learning
    • Proceedings of the International Conference on Machine Learning
    • T. Jebara, J. Wang, S. Chang, Graph construction and b-matching for semi-supervised learning, in: Proceedings of the International Conference on Machine Learning, 2009, pp. 441-448.
    • (2009) , pp. 441-448
    • Jebara, T.1    Wang, J.2    Chang, S.3
  • 28
    • 0004236492 scopus 로고    scopus 로고
    • Johns Hopkins University Press, Available at:
    • Golub G., Van Loan C. Matrix Computations 1996, 3rd. Johns Hopkins University Press, Available at: http://www.cs.cornell.edu/courses/cs621/Books/GVL/index.htm
    • (1996) Matrix Computations , vol.3
    • Golub, G.1    Van Loan, C.2
  • 29
    • 0003882879 scopus 로고    scopus 로고
    • AMS Bookstore, Available at:
    • Chung F. Spectral Graph Theory 1997, AMS Bookstore, Available at: http://www.math.ucsd.edu/~fan/research/revised.html
    • (1997) Spectral Graph Theory
    • Chung, F.1
  • 31
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization. a geometric framework for learning from labeled and unlabeled examples
    • Belkin M., Niyogi P., Sindhwani V. Manifold regularization. a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 2006, 7:2399-2434.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 33
    • 34948904828 scopus 로고    scopus 로고
    • Caltech-256 object category dataset, Technical Report 7694, California Institute of Technology, URL
    • G. Griffin, A. Holub, P. Perona, Caltech-256 object category dataset, Technical Report 7694, California Institute of Technology, 2007, URL http://authors.library.caltech.edu/7694.
    • (2007)
    • Griffin, G.1    Holub, A.2    Perona, P.3
  • 34
    • 77956005674 scopus 로고    scopus 로고
    • Safety in numbers: Learning categories from few examples with multi model knowledge transfer
    • 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
    • T. Tommasi, F. Orabona, B. Caputo, Safety in numbers: Learning categories from few examples with multi model knowledge transfer, in: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010, pp. 3081-3088.
    • (2010) , pp. 3081-3088
    • Tommasi, T.1    Orabona, F.2    Caputo, B.3
  • 35
    • 36849014901 scopus 로고    scopus 로고
    • Representing shape with a spatial pyramid kernel
    • in: 6th ACM International Conference on Image and Video Retrieval
    • A. Bosch, A. Zisserman, X. Munoz, Representing shape with a spatial pyramid kernel, in: 6th ACM International Conference on Image and Video Retrieval, 2007.
    • (2007)
    • Bosch, A.1    Zisserman, A.2    Munoz, X.3
  • 36
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe D. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60(2):91-110.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 37
    • 34948876368 scopus 로고    scopus 로고
    • Human detection via classification on Riemannian manifolds
    • 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
    • O. Tuzel, F. Porikli, P. Meer, Human detection via classification on Riemannian manifolds, in: 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2007.
    • (2007)
    • Tuzel, O.1    Porikli, F.2    Meer, P.3
  • 38
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • Ojala T., Pietikainen M., Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24(7):971-987.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.7 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.3
  • 39
    • 80052786853 scopus 로고    scopus 로고
    • Violence detection in video using computer vision techniques
    • Computer Analysis of Images and Patterns, Springer, Available at:
    • E. Nievas, O. Suarez, G. García, R. Sukthankar, Violence detection in video using computer vision techniques, in: Computer Analysis of Images and Patterns, Springer, 2011, pp. 332-339. Available at: http://link.springer.com/chapter/10.1007/978-3-642-23678-5_39.
    • (2011) , pp. 332-339
    • Nievas, E.1    Suarez, O.2    García, G.3    Sukthankar, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.