메뉴 건너뛰기




Volumn 22, Issue 2, 2013, Pages 523-536

Manifold regularized multitask learning for semi-supervised multilabel image classification

Author keywords

Image classification; manifold; multilabel; semi supervised; shared subspace

Indexed keywords

BINARY CLASSIFIERS; CLASSIFICATION PERFORMANCE; COMMON STRUCTURES; DATA DISTRIBUTION; DATA MANIFOLDS; DATA SETS; GEOMETRIC STRUCTURE; HIGH-DIMENSIONAL; HYPOTHESIS SPACE; IMAGE CLASSIFICATION ALGORITHMS; MANIFOLD; MODEL COMPLEXITY; MULTI-LABEL; MULTIPLE CLASSIFICATION; MULTIPLE LABELS; MULTITASK LEARNING; SEARCH VOLUME; SEMI-SUPERVISED; SHARED SUBSPACE; VISUAL FEATURE;

EID: 84872258670     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2012.2218825     Document Type: Article
Times cited : (179)

References (45)
  • 2
    • 33745615875 scopus 로고    scopus 로고
    • Principal components null space analysis for image and video classification
    • DOI 10.1109/TIP.2006.873449
    • N. Vaswani and R. Chellappa, "Principal components null space analysis for image and video classification," IEEE Trans. Image Process., vol. 15, no. 7, pp. 1816-1830, Jul. 2006. (Pubitemid 43985063)
    • (2006) IEEE Transactions on Image Processing , vol.15 , Issue.7 , pp. 1816-1830
    • Vaswani, N.1    Chellappa, R.2
  • 3
    • 70349469297 scopus 로고    scopus 로고
    • Compressive-projection principal component analysis
    • Oct
    • J. Fowler, "Compressive-projection principal component analysis," IEEE Trans. Image Process., vol. 18, no. 10, pp. 2230-2242, Oct. 2009.
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.10 , pp. 2230-2242
    • Fowler, J.1
  • 4
    • 0005977840 scopus 로고    scopus 로고
    • Inst. Adaptive and Neural Computation, Univ. Edinburgh, Edinburgh, U.K., Tech. Rep. TR.2001
    • M. Seeger, "Learning with labeled and unlabeled data," Inst. Adaptive and Neural Computation, Univ. Edinburgh, Edinburgh, U.K., Tech. Rep. TR.2001, 2001.
    • (2001) Learning with Labeled and Unlabeled Data
    • Seeger, M.1
  • 6
    • 33745456231 scopus 로고    scopus 로고
    • Dept. Electr. Eng., Univ. Wisconsin-Madison, Madison, Tech. Rep. 1530
    • X. Zhu, "Semi-supervised learning literature survey," Dept. Electr. Eng., Univ. Wisconsin-Madison, Madison, Tech. Rep. 1530, 2006.
    • (2006) Semi-supervised Learning Literature Survey
    • Zhu, X.1
  • 7
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Mach. Learn. Res., vol. 7, pp. 2399-2434, Aug. 2006. (Pubitemid 44708005)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 11
    • 79957500802 scopus 로고    scopus 로고
    • Optimal image alignment with random projections of manifolds: Algorithm and geometric analysis
    • Jun
    • E. Kokiopoulou, D. Kressner, and P. Frossard, "Optimal image alignment with random projections of manifolds: Algorithm and geometric analysis," IEEE Trans. Image Process., vol. 20, no. 6, pp. 1543-1557, Jun. 2011.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.6 , pp. 1543-1557
    • Kokiopoulou, E.1    Kressner, D.2    Frossard, P.3
  • 12
    • 77952894864 scopus 로고    scopus 로고
    • Bregman divergence-based regularization for transfer subspace learning
    • Jul
    • S. Si, D. Tao, and B. Geng, "Bregman divergence-based regularization for transfer subspace learning," IEEE Trans. Knowl. Data Eng., vol. 22, no. 7, pp. 929-942, Jul. 2010.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.7 , pp. 929-942
    • Si, S.1    Tao, D.2    Geng, B.3
  • 13
    • 85016672386 scopus 로고    scopus 로고
    • Sparse transfer learning for interactive video search reranking
    • X. Tian, D. Tao, and Y. Rui, "Sparse transfer learning for interactive video search reranking," ACM Trans. Multimedia Comput., Commun., Appl., vol. 8, no. 3, pp. 1-17, 2012.
    • (2012) ACM Trans. Multimedia Comput., Commun., Appl. , vol.8 , Issue.3 , pp. 1-17
    • Tian, X.1    Tao, D.2    Rui, Y.3
  • 15
    • 0031189914 scopus 로고    scopus 로고
    • Multitask Learning
    • R. Caruana, "Multitask learning," Mach. Learn., vol. 28, no. 1, pp. 41-75, 1997. (Pubitemid 127507169)
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 16
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Nov.
    • R. Ando and T. Zhang, "A framework for learning predictive structures from multiple tasks and unlabeled data," J. Mach. Learn. Res., vol. 6, pp. 1817-1853, Nov. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1817-1853
    • Ando, R.1    Zhang, T.2
  • 17
    • 77953216761 scopus 로고    scopus 로고
    • A shared-subspace learning framework for multi-label classification
    • S. Ji, L. Tang, S. Yu, and J. Ye, "A shared-subspace learning framework for multi-label classification," ACM Trans. Knowl. Disc. Data, vol. 4, no. 2, pp. 1-29, 2010.
    • (2010) ACM Trans. Knowl. Disc. Data , vol.4 , Issue.2 , pp. 1-29
    • Ji, S.1    Tang, L.2    Yu, S.3    Ye, J.4
  • 19
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 20
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • DOI 10.1023/A:1011139631724
    • A. Oliva and A. Torralba, "Modeling the shape of the scene: A holistic representation of the spatial envelope," Int. J. Comput. Vis., vol. 42, no. 3, pp. 145-175, 2001. (Pubitemid 32680801)
    • (2001) International Journal of Computer Vision , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 25
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • K. Nigam, A. McCallum, S. Thrun, and T. Mitchell, "Text classification from labeled and unlabeled documents using EM," Mach. Learn., vol. 39, no. 2, pp. 103-134, 2000. (Pubitemid 30594822)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    Mccallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 27
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims, "Transductive inference for text classification using support vector machines," in Proc. 16th Int. Conf. Mach. Learn., 1999, pp. 200-209.
    • (1999) Proc. 16th Int. Conf. Mach. Learn. , pp. 200-209
    • Joachims, T.1
  • 28
    • 84858874031 scopus 로고    scopus 로고
    • Partially labeled classification with Markov random walks
    • Cambridge, MA: MIT Press
    • M. Szummer and T. Jaakkola, "Partially labeled classification with Markov random walks," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2002, pp. 945-952.
    • (2002) Advances in Neural Information Processing Systems , pp. 945-952
    • Szummer, M.1    Jaakkola, T.2
  • 29
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J. Lafferty, "Semi-supervised learning using Gaussian fields and harmonic functions," in Proc. 20th Int. Conf. Mach. Learn., 2003, pp. 912-919.
    • (2003) Proc. 20th Int. Conf. Mach. Learn. , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 30
    • 3042597440 scopus 로고    scopus 로고
    • Learning multilabel scene classification
    • M. Boutell, J. Luo, X. Shen, and C. Brown, "Learning multilabel scene classification," Pattern Recognit., vol. 37, no. 9, pp. 1757-1771, 2004.
    • (2004) Pattern Recognit. , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 31
    • 34748873053 scopus 로고    scopus 로고
    • Multilabel classification: An overview
    • G. Tsoumakas and I. Katakis, "Multilabel classification: An overview," Int. J. Data Warehous. Min., vol. 3, no. 3, pp. 1-13, 2007.
    • (2007) Int. J. Data Warehous. Min. , vol.3 , Issue.3 , pp. 1-13
    • Tsoumakas, G.1    Katakis, I.2
  • 32
    • 0003223784 scopus 로고    scopus 로고
    • Multilabel text classification with a mixture model trained by em
    • A. McCallum, "Multilabel text classification with a mixture model trained by EM," in Proc. AAAI Workshop Text Learn., 1999, pp. 1-6.
    • (1999) Proc. AAAI Workshop Text Learn. , pp. 1-6
    • McCallum, A.1
  • 33
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • R. Schapire and Y. Singer, "Boostexter: A boosting-based system for text categorization," Mach. Learn., vol. 39, no. 2, pp. 135-168, 2000. (Pubitemid 30594821)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 34
    • 14344277592 scopus 로고    scopus 로고
    • A model of inductive bias learning
    • Jun.
    • J. Baxter, "A model of inductive bias learning," J. Artif. Intell. Res., vol. 12, pp. 149-198, Jun. 2000.
    • (2000) J. Artif. Intell. Res. , vol.12 , pp. 149-198
    • Baxter, J.1
  • 35
    • 0042496037 scopus 로고    scopus 로고
    • Discovering structure in multiple learning tasks: The TC algorithm
    • S. Thrun and J. O'Sullivan, "Discovering structure in multiple learning tasks: The TC algorithm," in Proc. Int. Conf. Mach. Learn., 1996, pp. 489-497.
    • (1996) Proc. Int. Conf. Mach. Learn. , pp. 489-497
    • Thrun, S.1    O'Sullivan, J.2
  • 36
  • 38
    • 55149088329 scopus 로고    scopus 로고
    • Convex multitask feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil, "Convex multitask feature learning," Mach. Learn., vol. 73, no. 3, pp. 243-272, 2008.
    • (2008) Mach. Learn. , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 39
    • 21844456299 scopus 로고    scopus 로고
    • Learning multiple tasks with kernel methods
    • T. Evgeniou, C. Micchelli, and M. Pontil, "Learning multiple tasks with kernel methods," J. Mach. Learn. Res., vol. 6, no. 1, pp. 615-637, 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , Issue.1 , pp. 615-637
    • Evgeniou, T.1    Micchelli, C.2    Pontil, M.3
  • 44
    • 84872235521 scopus 로고    scopus 로고
    • MahNMF: Manhattan non-negative matrix factorization
    • N. Guan, D. Tao, Z. Luo, and J. Shawe-Taylor, "MahNMF: Manhattan non-negative matrix factorization," Mach. Learn., vol. 1, no. 5, pp. 1-43, 2012.
    • (2012) Mach. Learn. , vol.1 , Issue.5 , pp. 1-43
    • Guan, N.1    Tao, D.2    Luo, Z.3    Shawe-Taylor, J.4
  • 45
    • 40049103965 scopus 로고    scopus 로고
    • Dept. Electr. Eng., Univ. Waterloo, Waterloo, ON, Canada, Tech. Rep., Working Paper 2004-09
    • M. Zhu, "Recall, precision and average precision," Dept. Electr. Eng., Univ. Waterloo, Waterloo, ON, Canada, Tech. Rep., Working Paper 2004-09, 2004.
    • (2004) Recall, Precision and Average Precision
    • Zhu, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.