-
1
-
-
85167407035
-
Redundant feature elimination for multi-class problems
-
Appice, A.; Ceci, M.; and et al. 2004. Redundant feature elimination for multi-class problems. In ICML.
-
(2004)
ICML
-
-
Appice, A.1
Ceci, M.2
-
4
-
-
84960463485
-
Minimum redundancy feature selection from microarray gene expression data
-
Ding, C., and Peng, H. 2003. Minimum redundancy feature selection from microarray gene expression data. In CSB'03, 523-529.
-
(2003)
CSB'03
, pp. 523-529
-
-
Ding, C.1
Peng, H.2
-
5
-
-
63649163673
-
Relevant and redundant feature analysis with ensemble classification
-
Duangsoithong, R. 2009. Relevant and redundant feature analysis with ensemble classification. In ICAPR'09.
-
(2009)
ICAPR'09
-
-
Duangsoithong, R.1
-
6
-
-
0003922190
-
-
John Wiley & Sons, New York, 2 edition
-
Duda, R.; Hart, P.; and Stork, D. 2001. Pattern Classification. John Wiley & Sons, New York, 2 edition.
-
(2001)
Pattern Classification
-
-
Duda, R.1
Hart, P.2
Stork, D.3
-
7
-
-
14344259210
-
Text categorization with many redundant features: using aggressive feature selection to make svms competitive with c4.5
-
Gabrilovich, E., and et al. 2004. Text categorization with many redundant features: using aggressive feature selection to make svms competitive with c4.5. In ICML'04.
-
(2004)
ICML'04
-
-
Gabrilovich, E.1
-
8
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon, I., and Elisseeff, A. 2003. An introduction to variable and feature selection. JMLR 3:1157-1182.
-
(2003)
JMLR
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
11
-
-
84864039505
-
Laplacian score for feature selection
-
He, X.; Cai, D.; and Niyogi, P. 2005. Laplacian score for feature selection. In NIPS.
-
(2005)
NIPS
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
14
-
-
80053145416
-
Multi-task feature learning via efficient l2, 1-norm minimization
-
Liu, J.; Ji, S.; and Ye, J. 2009. Multi-task feature learning via efficient l2, 1-norm minimization. In UAI'09.
-
(2009)
UAI'09
-
-
Liu, J.1
Ji, S.2
Ye, J.3
-
15
-
-
81855220000
-
Trace ratio criterion for feature selection
-
Nie, F.; Xiang, S.; Jia, Y.; Zhang, C.; and Yan, S. 2008. Trace ratio criterion for feature selection. In AAAI.
-
(2008)
AAAI
-
-
Nie, F.1
Xiang, S.2
Jia, Y.3
Zhang, C.4
Yan, S.5
-
17
-
-
44649181578
-
Bayesian inference and optimal design for the sparse linear model
-
Seeger, M. 2008. Bayesian inference and optimal design for the sparse linear model. JMLR 9:759-813.
-
(2008)
JMLR
, vol.9
, pp. 759-813
-
-
Seeger, M.1
-
18
-
-
0141990695
-
Theoretical and empirical analysis of Relief and ReliefF
-
Sikonja, M. R., and Kononenko, I. 2003. Theoretical and empirical analysis of Relief and ReliefF. Machine Learning 53:23-69.
-
(2003)
Machine Learning
, vol.53
, pp. 23-69
-
-
Sikonja, M. R.1
Kononenko, I.2
-
19
-
-
70350625002
-
Supervised feature selection via dependence estimation
-
Song, L.; Smola, A.; Gretton, A.; Borgwardt, K.; and Bedo, J. 2007. Supervised feature selection via dependence estimation. In ICML.
-
(2007)
ICML
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Borgwardt, K.4
Bedo, J.5
-
20
-
-
71149101160
-
A least squares formulation for a class of generalized eigenvalue problems in machine learning
-
Sun, L.; Ji, S.; and Ye, J. 2009. A least squares formulation for a class of generalized eigenvalue problems in machine learning. In ICML.
-
(2009)
ICML
-
-
Sun, L.1
Ji, S.2
Ye, J.3
-
21
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens, J., and Vandewalle, J. 1999. Least squares support vector machine classifiers. Neural Processing Letters 9(3):1370-4621.
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 1370-4621
-
-
Suykens, J.1
Vandewalle, J.2
-
23
-
-
84890520049
-
Use of the zero norm with linear models and kernel methods
-
Weston, J.; Elisseff, A.; Schoelkopf, B.; and Tipping, M. 2003. Use of the zero norm with linear models and kernel methods. JMLR 3:1439-1461.
-
(2003)
JMLR
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseff, A.2
Schoelkopf, B.3
Tipping, M.4
-
24
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
Yu, L., and Liu, H. 2004. Efficient feature selection via analysis of relevance and redundancy. JMLR 5:1205-1224.
-
(2004)
JMLR
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
25
-
-
65149104302
-
Spectral feature selection for supervised and unsupervised learning
-
Zhao, Z., and Liu, H. 2007. Spectral feature selection for supervised and unsupervised learning. In ICML.
-
(2007)
ICML
-
-
Zhao, Z.1
Liu, H.2
|