메뉴 건너뛰기




Volumn 24, Issue 7-8, 2014, Pages 1785-1793

Monthly flow forecast for Mississippi River basin using artificial neural networks

Author keywords

Artificial neural network; Mississippi River; Monthly forecast; Water resources management

Indexed keywords

NEURAL NETWORKS; WATER RESOURCES; WATERSHEDS;

EID: 84900858642     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-013-1419-6     Document Type: Article
Times cited : (21)

References (28)
  • 1
    • 84900848339 scopus 로고    scopus 로고
    • Hybrid neural network modeling solutions
    • R. J. Abrahart, P. E. Kneale, and L. M. See (Eds.), Leiden: A.A Balkema Publishers
    • Shamseldin AY (2004) Hybrid neural network modeling solutions. In: Abrahart RJ, Kneale PE, See LM (eds) Neural networks for hydrological modeling. A. A Balkema Publishers, Leiden, pp 61-79.
    • (2004) Neural Networks for Hydrological Modeling , pp. 61-79
    • Shamseldin, A.Y.1
  • 2
    • 0033097707 scopus 로고    scopus 로고
    • A comparison between neural-network forecasting techniques-case study: river flow forecasting
    • Atiya AF, El-Shoura SM, Shaheen SI, El-Sherif MS (1999) A comparison between neural-network forecasting techniques-case study: river flow forecasting. IEEE Trans Neural Netw 10(2): 402-409.
    • (1999) IEEE Trans Neural Netw , vol.10 , Issue.2 , pp. 402-409
    • Atiya, A.F.1    El-Shoura, S.M.2    Shaheen, S.I.3    El-Sherif, M.S.4
  • 3
    • 0033535432 scopus 로고    scopus 로고
    • A nonlinear rainfall-runoff model using an artificial neural network
    • Sajikumar N, Thandaveswara BS (1999) A nonlinear rainfall-runoff model using an artificial neural network. J Hydrol 216: 32-55.
    • (1999) J Hydrol , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 4
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology-1: preliminary concepts
    • ASCE Task Committee
    • ASCE Task Committee (2000) Artificial neural networks in hydrology-1: preliminary concepts. J Hydrol Eng ASCE 5(2): 115-123.
    • (2000) J Hydrol Eng ASCE , vol.5 , Issue.2 , pp. 115-123
  • 5
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology-2: hydrologic applications
    • ASCE Task Committee
    • ASCE Task Committee (2000) Artificial neural networks in hydrology-2: hydrologic applications. J Hydrol Eng ASCE 5(2): 124-137.
    • (2000) J Hydrol Eng ASCE , vol.5 , Issue.2 , pp. 124-137
  • 6
    • 85006941509 scopus 로고    scopus 로고
    • Rainfall and runoff forecasting with SSA-SVM approach
    • Sivapragasam C, Liong SY, Pasha MFK (2001) Rainfall and runoff forecasting with SSA-SVM approach. J Hydroinform 3(3): 141-152.
    • (2001) J Hydroinform , vol.3 , Issue.3 , pp. 141-152
    • Sivapragasam, C.1    Liong, S.Y.2    Pasha, M.F.K.3
  • 7
    • 0038502200 scopus 로고    scopus 로고
    • Artificial neural networks for stream flow prediction
    • Dolling OR, Varas EA (2002) Artificial neural networks for stream flow prediction. J Hydraul Res 40(5): 547-554.
    • (2002) J Hydraul Res , vol.40 , Issue.5 , pp. 547-554
    • Dolling, O.R.1    Varas, E.A.2
  • 9
    • 4644299731 scopus 로고    scopus 로고
    • Forecasting flows in Apalachicola River using neural networks
    • Huang W, Xu B, Amy CH (2004) Forecasting flows in Apalachicola River using neural networks. Hydrol Process 18: 2545-2564.
    • (2004) Hydrol Process , vol.18 , pp. 2545-2564
    • Huang, W.1    Xu, B.2    Amy, C.H.3
  • 10
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi O (2004) River flow modeling using artificial neural networks. J Hydrol Eng 9(1): 60-63.
    • (2004) J Hydrol Eng , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 11
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the internal behavior of artificial neural network river flow model
    • Sudheer KP, Jain A (2004) Explaining the internal behavior of artificial neural network river flow model. Hydrol Process 118(4): 833-844.
    • (2004) Hydrol Process , vol.118 , Issue.4 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 12
    • 78651288786 scopus 로고    scopus 로고
    • River flow forecasting using neural networks and wavelet analysis
    • Cannas B, Fanni A, Tronci S (2005) River flow forecasting using neural networks and wavelet analysis. Geophys Res Abstr 7: 08651.
    • (2005) Geophys Res Abstr , vol.7 , pp. 08651
    • Cannas, B.1    Fanni, A.2    Tronci, S.3
  • 13
    • 77951015838 scopus 로고    scopus 로고
    • River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin
    • Akhtar MK, Corzo GA, van Andel SJ, Jonoski A (2009) River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin. Hydrol Earth Syst Sci 13: 1607-1618.
    • (2009) Hydrol Earth Syst Sci , vol.13 , pp. 1607-1618
    • Akhtar, M.K.1    Corzo, G.A.2    van Andel, S.J.3    Jonoski, A.4
  • 14
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang WC, Chau KW, Cheng CT, Qiu L (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374: 294-306.
    • (2009) J Hydrol , vol.374 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 15
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly stream flow using data driven models coupled with data pre-processing techniques
    • doi:10.1029/2007WR006737
    • Wu CL, Chau KW, Li YS (2009) Predicting monthly stream flow using data driven models coupled with data pre-processing techniques. Water Resour Res 45: W08432. doi: 10. 1029/2007WR006737.
    • (2009) Water Resour Res , vol.45
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 16
    • 84857306667 scopus 로고    scopus 로고
    • ANN based river stage-discharge modeling for Godavari River India
    • Bisht DCS, Raju MM, Joshi MC (2010) ANN based river stage-discharge modeling for Godavari River India. Comput Model New Technol 14(3): 48-62.
    • (2010) Comput Model New Technol , vol.14 , Issue.3 , pp. 48-62
    • Bisht, D.C.S.1    Raju, M.M.2    Joshi, M.C.3
  • 17
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
    • Maier HR, Jain A, Dandy GC, Sudheer KP (2010) Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ Model Softw 25(8): 891-909.
    • (2010) Environ Model Softw , vol.25 , Issue.8 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 18
    • 75149184952 scopus 로고    scopus 로고
    • Artificial neural network model for river flow forecasting in a developing country
    • Shamseldin AY (2010) Artificial neural network model for river flow forecasting in a developing country. J Hydroinform 12(1): 22-35.
    • (2010) J Hydroinform , vol.12 , Issue.1 , pp. 22-35
    • Shamseldin, A.Y.1
  • 19
    • 80053943536 scopus 로고    scopus 로고
    • Reservoir inflow forecasting using artificial neural network
    • Othman F, Naseri M (2011) Reservoir inflow forecasting using artificial neural network. Int J Phys Sci 6(3): 434-440.
    • (2011) Int J Phys Sci , vol.6 , Issue.3 , pp. 434-440
    • Othman, F.1    Naseri, M.2
  • 20
    • 80054871623 scopus 로고    scopus 로고
    • Catchment flow estimation using artificial neural networks in the mountainous Euphrates Basin
    • Yilmaz AG, Imteaz MA, Jenkins G (2011) Catchment flow estimation using artificial neural networks in the mountainous Euphrates Basin. J Hydrol 410: 134-140.
    • (2011) J Hydrol , vol.410 , pp. 134-140
    • Yilmaz, A.G.1    Imteaz, M.A.2    Jenkins, G.3
  • 21
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1-background and methodology
    • Bowden GJ, Dandy GC, Maier HR (2005) Input determination for neural network models in water resources applications. Part 1-background and methodology. J Hydrol 301: 75-92.
    • (2005) J Hydrol , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 22
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang WC, Chau KW, Cheng CT, Qui L (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374: 294-306.
    • (2009) J Hydrol , vol.374 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qui, L.4
  • 23
    • 79951579061 scopus 로고    scopus 로고
    • A wavelet-support vector machine conjunction model for monthly stream flow forecasting
    • Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly stream flow forecasting. J Hydrol 399: 132-140.
    • (2011) J Hydrol , vol.399 , pp. 132-140
    • Kisi, O.1    Cimen, M.2
  • 24
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
    • Wu CL, Chau KW, Li YS (2009) Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour Res 45(8): 159-175.
    • (2009) Water Resour Res , vol.45 , Issue.8 , pp. 159-175
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 25
    • 0027009899 scopus 로고
    • Rainfall input in an adaptive river flow forecast model
    • Iritz L (1992) Rainfall input in an adaptive river flow forecast model. Hydrol Sci J 37(6): 607-620.
    • (1992) Hydrol Sci J , vol.37 , Issue.6 , pp. 607-620
    • Iritz, L.1
  • 26
    • 18844480083 scopus 로고    scopus 로고
    • Comparison of four updating models for real-time river flow forecasting
    • Xiong L, O'Connor KM (2002) Comparison of four updating models for real-time river flow forecasting. Hydrol Sci 47(4): 621-639. http://www. mvs. usace. army. mil/Our%20Mississippi/ourmississippi_su11_lowres. pdf.
    • (2002) Hydrol Sci , vol.47 , Issue.4 , pp. 621-639
    • Xiong, L.1    O'Connor, K.M.2
  • 28
    • 84871406472 scopus 로고    scopus 로고
    • USACE, Rock Island, IL: US Army Corps of Engineers (viewed March 2012)
    • USACE (2011) Great flood of'11. Our Mississippi. Rock Island, IL: US Army Corps of Engineers (viewed March 2012).
    • (2011) Great flood of'11. Our Mississippi


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.