메뉴 건너뛰기




Volumn 36, Issue 4, 2012, Pages 2505-2519

Support vector machine based diagnostic system for breast cancer using swarm intelligence

Author keywords

Breast cancer diagnosis; Feature selection; Particle swarm optimization; Support vector machines; Swarm intelligence

Indexed keywords

ACCELERATION; ALGORITHM; ARTICLE; BREAST CANCER; CANCER CLASSIFICATION; CANCER DIAGNOSIS; CLINICAL DECISION MAKING; CLINICAL EFFECTIVENESS; DECISION SUPPORT SYSTEM; DIAGNOSTIC ACCURACY; DIAGNOSTIC VALUE; MEDICAL INFORMATION SYSTEM; PREDICTIVE VALUE; PROCESS OPTIMIZATION; SUPPORT VECTOR MACHINE; WEIGHT; ARTIFICIAL INTELLIGENCE; BREAST TUMOR; CLASSIFICATION; COMPUTER ASSISTED DIAGNOSIS; FEMALE; HUMAN;

EID: 84866075139     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-011-9723-0     Document Type: Article
Times cited : (102)

References (47)
  • 1
    • 58349120185 scopus 로고    scopus 로고
    • Breast mass classification based on cytological patterns using RBFNN and SVM
    • 10.1016/j.eswa.2008.06.127
    • Subashini, T., Ramalingam, V., and Palanivel, S., Breast mass classification based on cytological patterns using RBFNN and SVM. Expert Syst Appl 36(3):5284-5290, 2009.
    • (2009) Expert Syst Appl , vol.36 , Issue.3 , pp. 5284-5290
    • Subashini, T.1    Ramalingam, V.2    Palanivel, S.3
  • 2
    • 0029678894 scopus 로고    scopus 로고
    • Improved use of continuous attributes in C4. 5
    • 0900.68112
    • Quinlan, J., Improved use of continuous attributes in C4. 5. J Artif Intell Res 4:77-90, 1996.
    • (1996) J Artif Intell Res , vol.4 , pp. 77-90
    • Quinlan, J.1
  • 5
    • 0031623647 scopus 로고    scopus 로고
    • A support vector machine approach to decision trees
    • Bennett, K. and J. Blue, A support vector machine approach to decision trees. 1998, in Neural Networks Proceedings,. p. 2396-2401.
    • (1998) Neural Networks Proceedings , pp. 2396-2401
    • Bennett, K.1    Blue, J.2
  • 6
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • 1676919 10.1016/S0933-3657(98)00070-0
    • Nauck, D., and Kruse, R., Obtaining interpretable fuzzy classification rules from medical data. Artif Intell Med 16(2):149-169, 1999.
    • (1999) Artif Intell Med , vol.16 , Issue.2 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 7
    • 0344466786 scopus 로고    scopus 로고
    • A fuzzy-genetic approach to breast cancer diagnosis
    • 10.1016/S0933-3657(99)00019-6
    • Pena-Reyes, C. A., and Sipper, M., A fuzzy-genetic approach to breast cancer diagnosis. Artif Intell Med 17(2):131-155, 1999.
    • (1999) Artif Intell Med , vol.17 , Issue.2 , pp. 131-155
    • Pena-Reyes, C.A.1    Sipper, M.2
  • 8
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • 10.1016/S0933-3657(99)00041-X
    • Setiono, R., Generating concise and accurate classification rules for breast cancer diagnosis. Artif Intell Med 18(3):205-219, 2000.
    • (2000) Artif Intell Med , vol.18 , Issue.3 , pp. 205-219
    • Setiono, R.1
  • 10
    • 0041339769 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for the identification of fuzzy classifiers
    • 1047.68119 10.1016/S0167-8655(03)00047-3
    • Abonyi, J., and Szeifert, F., Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognit Lett 24(14):2195-2207, 2003.
    • (2003) Pattern Recognit Lett , vol.24 , Issue.14 , pp. 2195-2207
    • Abonyi, J.1    Szeifert, F.2
  • 11
    • 23944521875 scopus 로고    scopus 로고
    • A mixture of experts network structure for breast cancer diagnosis
    • 10.1007/s10916-005-6112-6
    • Übeyli, E. D., A mixture of experts network structure for breast cancer diagnosis. J Med Syst 29(5):569-579, 2005.
    • (2005) J Med Syst , vol.29 , Issue.5 , pp. 569-579
    • Übeyli, E.D.1
  • 12
    • 33846014233 scopus 로고    scopus 로고
    • A new hybrid method based on fuzzy-Artificial immune system and k-nn algorithm for breast cancer diagnosis
    • 10.1016/j.compbiomed.2006.05.003
    • Sahan, S., et al., A new hybrid method based on fuzzy-Artificial immune system and k-nn algorithm for breast cancer diagnosis. Comput Biol Med 37(3):415-423, 2007.
    • (2007) Comput Biol Med , vol.37 , Issue.3 , pp. 415-423
    • Sahan, S.1
  • 13
    • 33947653184 scopus 로고    scopus 로고
    • Implementing automated diagnostic systems for breast cancer detection
    • 10.1016/j.eswa.2006.08.005
    • Ubeyli, E. D., Implementing automated diagnostic systems for breast cancer detection. Expert Syst Appl 33(4):1054-1062, 2007.
    • (2007) Expert Syst Appl , vol.33 , Issue.4 , pp. 1054-1062
    • Ubeyli, E.D.1
  • 14
    • 34249317613 scopus 로고    scopus 로고
    • Breast cancer diagnosis using least square support vector machine
    • 10.1016/j.dsp.2006.10.008
    • Polat, K., and Gunes, S., Breast cancer diagnosis using least square support vector machine. Digital Signal Process 17(4):694-701, 2007.
    • (2007) Digital Signal Process , vol.17 , Issue.4 , pp. 694-701
    • Polat, K.1    Gunes, S.2
  • 15
    • 56349089940 scopus 로고    scopus 로고
    • Support vector machines combined with feature selection for breast cancer diagnosis
    • 10.1016/j.eswa.2008.01.009
    • Akay, M. F., Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst Appl 36(2):3240-3247, 2009.
    • (2009) Expert Syst Appl , vol.36 , Issue.2 , pp. 3240-3247
    • Akay, M.F.1
  • 16
    • 70449673352 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference systems for automatic detection of breast cancer
    • 10.1007/s10916-008-9197-x
    • Übeyli, E. D., Adaptive neuro-fuzzy inference systems for automatic detection of breast cancer. J Med Syst 33(5):353-358, 2009.
    • (2009) J Med Syst , vol.33 , Issue.5 , pp. 353-358
    • Übeyli, E.D.1
  • 17
    • 56349123043 scopus 로고    scopus 로고
    • An expert system for detection of breast cancer based on association rules and neural network
    • 10.1016/j.eswa.2008.02.064
    • Karabatak, M., and Ince, M. C., An expert system for detection of breast cancer based on association rules and neural network. Expert Syst Appl 36(2, Part 2):3465-3469, 2009.
    • (2009) Expert Syst Appl , vol.36 , Issue.2 PART 2 , pp. 3465-3469
    • Karabatak, M.1    Ince, M.C.2
  • 18
    • 77957593466 scopus 로고    scopus 로고
    • Neural Network Classifier with Entropy Based Feature Selection on Breast Cancer Diagnosis
    • 10.1007/s10916-009-9301-x
    • Huang, M.-L., Hung, Y.-H., and Chen, W.-Y., Neural Network Classifier with Entropy Based Feature Selection on Breast Cancer Diagnosis. J Med Syst 34(5):865-873, 2010.
    • (2010) J Med Syst , vol.34 , Issue.5 , pp. 865-873
    • Huang, M.-L.1    Hung, Y.-H.2    Chen, W.-Y.3
  • 19
    • 79953712588 scopus 로고    scopus 로고
    • WBCD Breast Cancer Database Classification Applying Artificial Metaplasticity Neural Network
    • Marcano-Cedeño, A., J. Quintanilla-Domíngueza, and D. Andina, WBCD Breast Cancer Database Classification Applying Artificial Metaplasticity Neural Network. Expert Systems with Applications, 2011. http://dx.doi.org/10.1016/j.eswa.2011.01.167.
    • (2011) Expert Systems with Applications
    • Marcano-Cedeño, A.1
  • 20
    • 77957898242 scopus 로고    scopus 로고
    • A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification
    • 10.1016/j.asoc.2009.12.023
    • Fan, C.-Y., et al., A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification. Appl Soft Comput 11(1):632-644, 2011.
    • (2011) Appl Soft Comput , vol.11 , Issue.1 , pp. 632-644
    • Fan, C.-Y.1
  • 21
    • 79952449647 scopus 로고    scopus 로고
    • A support vector machine classifier with rough set based feature selection for breast cancer diagnosis
    • 10.1016/j.eswa.2011.01.120
    • Chen, H. L., et al., A support vector machine classifier with rough set based feature selection for breast cancer diagnosis. Expert Syst Appl 38(7):9014-9022, 2011.
    • (2011) Expert Syst Appl , vol.38 , Issue.7 , pp. 9014-9022
    • Chen, H.L.1
  • 25
    • 34249753618 scopus 로고
    • Support-vector networks
    • 0831.68098
    • Cortes, C., and Vapnik, V., Support-vector networks. Mach Learn 20(3):273-297, 1995.
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 30
    • 4944228528 scopus 로고    scopus 로고
    • Technical report, Department of Computer Science and Information Engineering, National Taiwan University, Taipei
    • Hsu, C.W., C.C. Chang, and C.J. Lin, A practical guide to support vector classification. 2003, Technical report, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, 2003. available at http://www.csie.ntu.edu.tw/cjlin/libsvm/.
    • (2003) A Practical Guide to Support Vector Classification. 2003
    • Hsu, C.W.1    Chang, C.C.2    Lin, C.J.3
  • 31
    • 0036738840 scopus 로고    scopus 로고
    • Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
    • 10.1109/TNN.2002.1031955
    • Keerthi, S., Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Trans Neural Netw 13(5):1225-1229, 2002.
    • (2002) IEEE Trans Neural Netw , vol.13 , Issue.5 , pp. 1225-1229
    • Keerthi, S.1
  • 32
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm - Explosion, stability, and convergence in a multidimensional complex space
    • 10.1109/4235.985692
    • Clerc, M., and Kennedy, J., The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58-73, 2002.
    • (2002) IEEE Trans Evol Comput , vol.6 , Issue.1 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 36
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • 1086.68569 10.1162/089976603321891855
    • Keerthi, S., and Lin, C., Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput 15(7):1667-1689, 2003.
    • (2003) Neural Comput , vol.15 , Issue.7 , pp. 1667-1689
    • Keerthi, S.1    Lin, C.2
  • 40
    • 3142768423 scopus 로고    scopus 로고
    • Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
    • 10.1109/TEVC.2004.826071
    • Ratnaweera, A., Halgamuge, S., and Watson, H., Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240-255, 2004.
    • (2004) IEEE Trans Evol Comput , vol.8 , Issue.3 , pp. 240-255
    • Ratnaweera, A.1    Halgamuge, S.2    Watson, H.3
  • 42
    • 84896721435 scopus 로고    scopus 로고
    • Empirical study of particle swarm optimization
    • Washington D.C., USA
    • Shi, Y. and R.C. Eberhart. Empirical study of particle swarm optimization. 1999: Congress on evolutionary computation, Washington D.C., USA, pp 1945-1949.
    • (1999) Congress on Evolutionary Computation , pp. 1945-1949
    • Shi, Y.1    Eberhart, R.C.2
  • 45
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • 10.1023/A:1009752403260
    • Salzberg, S. L., On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Min Knowl Discov 1(3):317-328, 1997.
    • (1997) Data Min Knowl Discov , vol.1 , Issue.3 , pp. 317-328
    • Salzberg, S.L.1
  • 46
    • 22544475586 scopus 로고    scopus 로고
    • GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data
    • 10.1016/j.ijmedinf.2005.05.002
    • Statnikov, A., et al., GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data. Int J Med Inform 74(7-8):491-503, 2005.
    • (2005) Int J Med Inform , vol.74 , Issue.7-8 , pp. 491-503
    • Statnikov, A.1
  • 47
    • 34047138318 scopus 로고    scopus 로고
    • Combining SVMs with Various Feature Selection Strategies
    • Chen, Y.-W. and C.-J. Lin, Combining SVMs with Various Feature Selection Strategies, in Feature Extraction. 2006. p. 315-324.
    • (2006) Feature Extraction , pp. 315-324
    • Chen, Y.-W.1    Lin, C.-J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.