메뉴 건너뛰기




Volumn 14, Issue , 2013, Pages

More powerful significant testing for time course gene expression data using functional principal component analysis approaches

Author keywords

Differentially expressed genes; Functional data analysis; Multiple group test; One group test; Time course gene expression; Yeast cell cycle

Indexed keywords

DIFFERENTIALLY EXPRESSED GENE; FUNCTIONAL DATA ANALYSIS; MULTIPLE-GROUP; ONE GROUP TEST; TIME COURSE; YEAST CELL CYCLES;

EID: 84872170913     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-14-6     Document Type: Article
Times cited : (38)

References (30)
  • 1
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • 10.1073/pnas.091062498, 33173, 11309499
    • Tusher V, Tibshirani R, Chu C. Significance analysis of microarrays applied to the ionizing radiation response. Proc Nat Acad Sci USA 2001, 98:5116-5121. 10.1073/pnas.091062498, 33173, 11309499.
    • (2001) Proc Nat Acad Sci USA , vol.98 , pp. 5116-5121
    • Tusher, V.1    Tibshirani, R.2    Chu, C.3
  • 2
    • 0041423883 scopus 로고    scopus 로고
    • SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays
    • New York: Springer, Parmigiani G, Garrett ES, Irizarry R, Zeger S
    • Storey J, Tibshirani R. SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays. The analysis of gene expression data: methods and software 2003, 272-290. New York: Springer, Parmigiani G, Garrett ES, Irizarry R, Zeger S.
    • (2003) The analysis of gene expression data: methods and software , pp. 272-290
    • Storey, J.1    Tibshirani, R.2
  • 3
    • 0037433769 scopus 로고    scopus 로고
    • Statistical tests for identifying differentially expressed genes in time course microarray experiments
    • 10.1093/bioinformatics/btg068, 12691981
    • Park T, Yi S, Lee S, Lee S, Yoo D, Ahn J, Lee Y. Statistical tests for identifying differentially expressed genes in time course microarray experiments. Bioinformatics 2003, 19:694-703. 10.1093/bioinformatics/btg068, 12691981.
    • (2003) Bioinformatics , vol.19 , pp. 694-703
    • Park, T.1    Yi, S.2    Lee, S.3    Lee, S.4    Yoo, D.5    Ahn, J.6    Lee, Y.7
  • 4
    • 33644872577 scopus 로고    scopus 로고
    • Limma: linear models for microarray data
    • New York: Springer, Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W
    • Smyth G. Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and Bioconductor 2005, 12837-12842. New York: Springer, Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W.
    • (2005) Bioinformatics and computational biology solutions using R and Bioconductor , pp. 12837-12842
    • Smyth, G.1
  • 5
    • 33750414249 scopus 로고    scopus 로고
    • A multivariate empirical Bayes statistic for replicated microarray time course data
    • Tai Y, Speed T. A multivariate empirical Bayes statistic for replicated microarray time course data. Ann Stat 2006, 34:2387-2412.
    • (2006) Ann Stat , vol.34 , pp. 2387-2412
    • Tai, Y.1    Speed, T.2
  • 6
    • 33846036999 scopus 로고    scopus 로고
    • Hidden Markov Models for Microarray Time Course Data in Multiple Biological Conditions
    • Yuan M, Kendziorski C. Hidden Markov Models for Microarray Time Course Data in Multiple Biological Conditions. J Am Stat Assoc 2006, 101(476):1323-1332.
    • (2006) J Am Stat Assoc , vol.101 , Issue.476 , pp. 1323-1332
    • Yuan, M.1    Kendziorski, C.2
  • 7
    • 79954483579 scopus 로고    scopus 로고
    • Multiple Testing for Pattern Identification, With Applications to Microarray Time-Course Experiments
    • Sun W, Wei Z. Multiple Testing for Pattern Identification, With Applications to Microarray Time-Course Experiments. J Am Stat Assocsss 2011, 106:73-88.
    • (2011) J Am Stat Assocsss , vol.106 , pp. 73-88
    • Sun, W.1    Wei, Z.2
  • 9
    • 79958115655 scopus 로고    scopus 로고
    • Analysing time-course microarray data using functional data analysis - A review
    • Coffey N, Hinde J. Analysing time-course microarray data using functional data analysis - A review. BMC Bioinf 2011, 10:23.
    • (2011) BMC Bioinf , vol.10 , pp. 23
    • Coffey, N.1    Hinde, J.2
  • 10
    • 0037101842 scopus 로고    scopus 로고
    • A regression-based method to identify differentially expressed genes in microarray time course studies and its application in an inducible Huntington's disease transgenic model
    • Xu XL, Olson JM, Zhao LP. A regression-based method to identify differentially expressed genes in microarray time course studies and its application in an inducible Huntington's disease transgenic model. Human Mol Genet 2002, 11(17):1977-1985.
    • (2002) Human Mol Genet , vol.11 , Issue.17 , pp. 1977-1985
    • Xu, X.L.1    Olson, J.M.2    Zhao, L.P.3
  • 11
    • 0042838381 scopus 로고    scopus 로고
    • Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes
    • 10.1073/pnas.1732547100, 193530, 12934016
    • Bar-Joseph Z, Gerber G, Simon I, Gifford D, Jaakkola T. Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes. Proc Nat Acad Sci USA 2003, 100:10146-10151. 10.1073/pnas.1732547100, 193530, 12934016.
    • (2003) Proc Nat Acad Sci USA , vol.100 , pp. 10146-10151
    • Bar-Joseph, Z.1    Gerber, G.2    Simon, I.3    Gifford, D.4    Jaakkola, T.5
  • 13
    • 33745242945 scopus 로고    scopus 로고
    • Functional hierarchical models for identifying genes with different time-course expression profiles
    • 10.1111/j.1541-0420.2005.00505.x, 16918918
    • Hong F, Li H. Functional hierarchical models for identifying genes with different time-course expression profiles. Biometrics 2006, 62:534-544. 10.1111/j.1541-0420.2005.00505.x, 16918918.
    • (2006) Biometrics , vol.62 , pp. 534-544
    • Hong, F.1    Li, H.2
  • 14
    • 74349089785 scopus 로고    scopus 로고
    • Identifying temporally differentially expressed genes through functional principal component analysis
    • 10.1093/biostatistics/kxp022, 19602570
    • Liu X, Yang M. Identifying temporally differentially expressed genes through functional principal component analysis. Biostatistics 2009, 10:667-679. 10.1093/biostatistics/kxp022, 19602570.
    • (2009) Biostatistics , vol.10 , pp. 667-679
    • Liu, X.1    Yang, M.2
  • 15
    • 78650070612 scopus 로고    scopus 로고
    • Identifying differentially expressed genes for time-course microarray data through functional data analysis
    • Chen K, Wang JL. Identifying differentially expressed genes for time-course microarray data through functional data analysis. Stat Biosci 2010, 2:95-119.
    • (2010) Stat Biosci , vol.2 , pp. 95-119
    • Chen, K.1    Wang, J.L.2
  • 16
    • 78649959694 scopus 로고    scopus 로고
    • Identifying differentially expressed genes in time course microarray data
    • Ma P, Zhong W, Liu J. Identifying differentially expressed genes in time course microarray data. Stat Biosci 2009, 1:144-159.
    • (2009) Stat Biosci , vol.1 , pp. 144-159
    • Ma, P.1    Zhong, W.2    Liu, J.3
  • 17
    • 45149097650 scopus 로고    scopus 로고
    • Global control of cell-cycle transcription by coupled CDK and network oscillators
    • 10.1038/nature06955, 2736871, 18463633
    • Orlando D, Lin C, Bernard A, Wang J, Socolar J, Iversen E, Hartemink A, Haase S. Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature 2008, 453:944-947. 10.1038/nature06955, 2736871, 18463633.
    • (2008) Nature , vol.453 , pp. 944-947
    • Orlando, D.1    Lin, C.2    Bernard, A.3    Wang, J.4    Socolar, J.5    Iversen, E.6    Hartemink, A.7    Haase, S.8
  • 18
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization
    • 25624, 9843569
    • Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Mol Biol Cell 1998, 9(12):3273-3297. 25624, 9843569.
    • (1998) Mol Biol Cell , vol.9 , Issue.12 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3    Iyer, V.R.4    Anders, K.5    Eisen, M.B.6    Brown, P.O.7    Botstein, D.8    Futcher, B.9
  • 20
    • 71749100064 scopus 로고    scopus 로고
    • A permutation-based multiple testing method for time-course microarray experiments
    • Sohn I, Owzar K, George SL, Kim S, Jung S. A permutation-based multiple testing method for time-course microarray experiments. BMC Bioinf 2009, 10:336.
    • (2009) BMC Bioinf , vol.10 , pp. 336
    • Sohn, I.1    Owzar, K.2    George, S.L.3    Kim, S.4    Jung, S.5
  • 21
    • 34347389249 scopus 로고    scopus 로고
    • Identifying differentially expressed genes in time-course microarray experiment without replicate
    • Han X, Sung WK, Feng L. Identifying differentially expressed genes in time-course microarray experiment without replicate. J Bioinf Comput Biol 2007, 5:281-296.
    • (2007) J Bioinf Comput Biol , vol.5 , pp. 281-296
    • Han, X.1    Sung, W.K.2    Feng, L.3
  • 22
    • 0004291753 scopus 로고
    • New York: Academic Press, [Probability and Mathematical Statistics, Vol. 27]
    • Ash RB, Gardner MF. Topics in stochastic processes 1975, New York: Academic Press, [Probability and Mathematical Statistics, Vol. 27].
    • (1975) Topics in stochastic processes
    • Ash, R.B.1    Gardner, M.F.2
  • 23
    • 19744375466 scopus 로고    scopus 로고
    • Functional data analysis for sparse longitudinal data
    • Yao F, Müller HG, Wang JL. Functional data analysis for sparse longitudinal data. J Am Stat Assoc 2005, 100(470):577-590.
    • (2005) J Am Stat Assoc , vol.100 , Issue.470 , pp. 577-590
    • Yao, F.1    Müller, H.G.2    Wang, J.L.3
  • 24
    • 12344320182 scopus 로고    scopus 로고
    • An F test for linear models with functional responses
    • Shen Q, Faraway J. An F test for linear models with functional responses. Statistica Sinica 2004, 14:1239-1257.
    • (2004) Statistica Sinica , vol.14 , pp. 1239-1257
    • Shen, Q.1    Faraway, J.2
  • 25
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R S Soc: Ser B (Stat Methodology) 1995, 57:289-300.
    • (1995) J R S Soc: Ser B (Stat Methodology) , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 26
    • 0037433040 scopus 로고    scopus 로고
    • Identifying diffrentially expressed genes using false discovery rate controlling procedure
    • 10.1093/bioinformatics/btf877, 12584122
    • Reiner A, Yekutieli D, Benjamini Y. Identifying diffrentially expressed genes using false discovery rate controlling procedure. Bioinformatics 2003, 19:368-375. 10.1093/bioinformatics/btf877, 12584122.
    • (2003) Bioinformatics , vol.19 , pp. 368-375
    • Reiner, A.1    Yekutieli, D.2    Benjamini, Y.3
  • 28
    • 0035733108 scopus 로고    scopus 로고
    • The control of the false discovery rate in multiple testing under dependency
    • Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat 2001, 29:1165-1188.
    • (2001) Ann Stat , vol.29 , pp. 1165-1188
    • Benjamini, Y.1    Yekutieli, D.2
  • 29
    • 44049091467 scopus 로고    scopus 로고
    • Detecting intergene correlation changes in microarray analysis: A new approach to gene selection
    • Klebanov L, Yakovlev A. Detecting intergene correlation changes in microarray analysis: A new approach to gene selection. Ann Appl Stat 2007, 1:538-559.
    • (2007) Ann Appl Stat , vol.1 , pp. 538-559
    • Klebanov, L.1    Yakovlev, A.2
  • 30
    • 77949517089 scopus 로고    scopus 로고
    • A new gene selection procedure based on the covariance distance
    • Hu R, Qiu X, Glazko G. A new gene selection procedure based on the covariance distance. Bioinformatics 2010, 23:348-354.
    • (2010) Bioinformatics , vol.23 , pp. 348-354
    • Hu, R.1    Qiu, X.2    Glazko, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.