메뉴 건너뛰기




Volumn 4, Issue , 2014, Pages

Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84900398410     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep04939     Document Type: Article
Times cited : (113)

References (41)
  • 1
    • 0037211850 scopus 로고    scopus 로고
    • Photovoltaic materials, history, status and outlook
    • Goetzberger, A., Hebling, C. & Schock, H. Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R 40, 1-46 (2003).
    • (2003) Mater. Sci. Eng. R , vol.40 , pp. 1-46
    • Goetzberger, A.1    Hebling, C.2    Schock, H.3
  • 6
    • 0036533269 scopus 로고    scopus 로고
    • Thin crystalline silicon solar cells
    • Willeke, G. Thin crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 72, 191 (2002).
    • (2002) Sol. Energy Mater. Sol. Cells , vol.72 , pp. 191
    • Willeke, G.1
  • 7
    • 0027592789 scopus 로고
    • On the thickness dependence of open circuit voltages of p-n junction solar cells
    • Brendel, R. & Queisser, H. On the thickness dependence of open circuit voltages of p-n junction solar cells. Sol. Energy Mater. Sol. Cells 29, 397 (1993).
    • (1993) Sol. Energy Mater. Sol. Cells , vol.29 , pp. 397
    • Brendel, R.1    Queisser, H.2
  • 9
    • 77249099338 scopus 로고    scopus 로고
    • Plasmonics for improved photovoltaic devices
    • Atwater, H. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205-213 (2010).
    • (2010) Nat. Mater. , vol.9 , pp. 205-213
    • Atwater, H.1    Polman, A.2
  • 10
    • 84875126773 scopus 로고    scopus 로고
    • Nanoplasmonics: A frontier of photovoltaic solar cells
    • Gu, M. et al. Nanoplasmonics: a frontier of photovoltaic solar cells. Nanophotonics 1, 235-248 (2012).
    • (2012) Nanophotonics , vol.1 , pp. 235-248
    • Gu, M.1
  • 11
    • 33748268674 scopus 로고    scopus 로고
    • Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles
    • Derkacs, D., Lim, S., Matheu, P., Mar, W. & Yu, E. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 89, 093103 (2006).
    • (2006) Appl. Phys. Lett. , vol.89 , pp. 093103
    • Derkacs, D.1    Lim, S.2    Matheu, P.3    Mar, W.4    Yu, E.5
  • 12
    • 79952332004 scopus 로고    scopus 로고
    • Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles
    • Eminian, C., Haug, F., Cubero, O., Niquille, X. & Ballif, C. Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles. Prog. Photovolt. Res. Appl. 19, 260-265 (2011).
    • (2011) Prog. Photovolt. Res. Appl. , vol.19 , pp. 260-265
    • Eminian, C.1    Haug, F.2    Cubero, O.3    Niquille, X.4    Ballif, C.5
  • 13
    • 84861069595 scopus 로고    scopus 로고
    • Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles
    • Chen, X. et al. Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Lett. 12, 2187-2192 (2012).
    • (2012) Nano Lett. , vol.12 , pp. 2187-2192
    • Chen, X.1
  • 14
    • 84870529070 scopus 로고    scopus 로고
    • Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells
    • Lare, M., Lenzmann, F., Verschuuren, M. & Polman, A. Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells. Appl. Phys. Lett. 101, 221110 (2012).
    • (2012) Appl. Phys. Lett. , vol.101 , pp. 221110
    • Lare, M.1    Lenzmann, F.2    Verschuuren, M.3    Polman, A.4
  • 15
    • 77954336873 scopus 로고    scopus 로고
    • Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons
    • Ouyang, Z. et al. Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons. Appl. Phys. Lett. 96, 261109 (2010).
    • (2010) Appl. Phys. Lett. , vol.96 , pp. 261109
    • Ouyang, Z.1
  • 16
    • 52949125589 scopus 로고    scopus 로고
    • Plasmonic nanoparticle enhanced light absorption in GaAs solar cells
    • Nakayama, K., Tanabe, K. & Atwater, H. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 93, 121904 (2008).
    • (2008) Appl. Phys. Lett. , vol.93 , pp. 121904
    • Nakayama, K.1    Tanabe, K.2    Atwater, H.3
  • 17
    • 84875138721 scopus 로고    scopus 로고
    • Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells
    • Cai, B., Jia, B., Shi, Z. & Gu, M. Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells. Appl. Phys. Lett. 102, 093107 (2013).
    • (2013) Appl. Phys. Lett. , vol.102 , pp. 093107
    • Cai, B.1    Jia, B.2    Shi, Z.3    Gu, M.4
  • 18
    • 84887939667 scopus 로고    scopus 로고
    • Concept to devices: From plasmonic light trapping to up-scaled plasmonic solar module
    • Jia, B. et al. Concept to devices: from plasmonic light trapping to up-scaled plasmonic solar module. Photon. Res. 1, 22 (2013).
    • (2013) Photon. Res. , vol.1 , pp. 22
    • Jia, B.1
  • 19
    • 84866256301 scopus 로고    scopus 로고
    • Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells
    • Fahim, N., Jia, B., Shi, Z. & Gu, M. Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells. Opt. Express 20, A694-A705 (2012).
    • (2012) Opt. Express , vol.20
    • Fahim, N.1    Jia, B.2    Shi, Z.3    Gu, M.4
  • 20
    • 79952339759 scopus 로고    scopus 로고
    • Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles
    • Beck, F., Mokkapati, S. & Catchpole, K. Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles. Prog. Photovolt. Res. Appl. 18, 500-504 (2010).
    • (2010) Prog. Photovolt. Res. Appl. , vol.18 , pp. 500-504
    • Beck, F.1    Mokkapati, S.2    Catchpole, K.3
  • 21
    • 84862797975 scopus 로고    scopus 로고
    • Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons
    • Yang, Y. et al. Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons. Sol. Energy Mater. Sol. Cells 101, 217-226 (2012).
    • (2012) Sol. Energy Mater. Sol. Cells , vol.101 , pp. 217-226
    • Yang, Y.1
  • 22
    • 69949126465 scopus 로고    scopus 로고
    • Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells
    • Temple, T., Mahanama, G., Reehal, H. & Bagnall, D. Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Sol. Energy Mater. Sol. Cells 93, 1978-1985 (2009).
    • (2009) Sol. Energy Mater. Sol. Cells , vol.93 , pp. 1978-1985
    • Temple, T.1    Mahanama, G.2    Reehal, H.3    Bagnall, D.4
  • 23
    • 84857602514 scopus 로고    scopus 로고
    • Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells
    • Xu, R. et al. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Opt. Express 20, 5061-5068 (2012).
    • (2012) Opt. Express , vol.20 , pp. 5061-5068
    • Xu, R.1
  • 24
    • 84859792509 scopus 로고    scopus 로고
    • Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells
    • Zhang, Y. et al. Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells. Appl. Phys. Lett. 100, 151101 (2012).
    • (2012) Appl. Phys. Lett. , vol.100 , pp. 151101
    • Zhang, Y.1
  • 25
    • 84877035370 scopus 로고    scopus 로고
    • Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating
    • Zhang, Y. et al. Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating. Opt. Mat. Express 3, 489-495 (2013).
    • (2013) Opt. Mat. Express , vol.3 , pp. 489-495
    • Zhang, Y.1
  • 26
    • 84882261508 scopus 로고    scopus 로고
    • Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinklelike graphene sheets
    • DOI:10.1038/lsa.2013.48
    • Chen, X., Jia, B., Zhang, Y. & Gu, M. Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinklelike graphene sheets. Light Sci. Appl. 2, e92; DOI:10.1038/lsa.2013.48 (2013).
    • (2013) Light Sci. Appl. , vol.2
    • Chen, X.1    Jia, B.2    Zhang, Y.3    Gu, M.4
  • 27
    • 84871803607 scopus 로고    scopus 로고
    • Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings
    • Fahim, N. et al. Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings. Appl. Phys. Lett. 101, 261102 (2012).
    • (2012) Appl. Phys. Lett. , vol.101 , pp. 261102
    • Fahim, N.1
  • 28
    • 38949119406 scopus 로고    scopus 로고
    • Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons
    • Hägglund, C., Zäch, M., Petersson, G. & Kasemo, B. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl. Phys. Lett. 92, 053110 (2008).
    • (2008) Appl. Phys. Lett. , vol.92 , pp. 053110
    • Hägglund, C.1    Zäch, M.2    Petersson, G.3    Kasemo, B.4
  • 30
    • 50249121880 scopus 로고    scopus 로고
    • Self-consistent optical parameters of intrinsic silicon at 300 kincluding temperature coefficient
    • Green, M. Self-consistent optical parameters of intrinsic silicon at 300 Kincluding temperature coefficient. Sol. Energy Mater. Sol. Cells 92, 1305-1310 (2008).
    • (2008) Sol. Energy Mater. Sol. Cells , vol.92 , pp. 1305-1310
    • Green, M.1
  • 31
    • 79954504223 scopus 로고    scopus 로고
    • Optical impedance matching using coupled plasmonic nanoparticle arrays
    • Spinelli, P. et al. Optical impedance matching using coupled plasmonic nanoparticle arrays. Nano Lett. 11, 1760-1765 (2011).
    • (2011) Nano Lett. , vol.11 , pp. 1760-1765
    • Spinelli, P.1
  • 32
    • 84891347582 scopus 로고    scopus 로고
    • Beyond the hybridization effects in plasmonic nanoclusters: Diffraction-induced enhanced absorption and scattering
    • Rahmani, M. et al. Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering. Small 10, 576-583 (2014).
    • (2014) Small , vol.10 , pp. 576-583
    • Rahmani, M.1
  • 33
    • 83555163937 scopus 로고    scopus 로고
    • Nanophotonic light-trapping theory for solar cells
    • Yu, Z., Raman, A. & Fan, S. Nanophotonic light-trapping theory for solar cells. Appl. Phys. A 105, 329-339 (2011).
    • (2011) Appl. Phys. A , vol.105 , pp. 329-339
    • Yu, Z.1    Raman, A.2    Fan, S.3
  • 34
    • 78049314257 scopus 로고    scopus 로고
    • Fundamental limit of nanophotonic light trapping in solar cells
    • Yu, Z., Raman, A. & Fan, S. Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl. Acad. Sci. U.S.A. 107, 17491-17496 (2010).
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 17491-17496
    • Yu, Z.1    Raman, A.2    Fan, S.3
  • 37
    • 0036141466 scopus 로고    scopus 로고
    • Very low bulk and surface recombination in oxidized silicon wafers
    • DOI 10.1088/0268-1242/17/1/306, PII S0268124202263993
    • Kerr, M. J. & Cuevas, A. Very low bulk and surface recombination in oxidized silicon wafers. Semicond. Sci. Technol. 17, 35-38 (2002). (Pubitemid 34080680)
    • (2002) Semiconductor Science and Technology , vol.17 , Issue.1 , pp. 35-38
    • Kerr, M.J.1    Cuevas, A.2
  • 38
    • 0036471761 scopus 로고    scopus 로고
    • Recombination at the interface between silicon and stoichiometric plasma silicon nitride
    • DOI 10.1088/0268-1242/17/2/314, PII S0268124202299769
    • Kerr, M. J. & Cuevas, A. Recombination at the interface between silicon and stoichiometric plasma silicon nitride. Semicond. Sci. Technol. 17, 166-172 (2002). (Pubitemid 34172785)
    • (2002) Semiconductor Science and Technology , vol.17 , Issue.2 , pp. 166-172
    • Kerr, M.J.1    Cuevas, A.2
  • 39
    • 84863915063 scopus 로고    scopus 로고
    • High-quality surface passivation of silicon using native oxide and silicon nitride layers
    • Chowdhury, Z. R., Cho, K. & Kherani, N. P. High-quality surface passivation of silicon using native oxide and silicon nitride layers. Appl. Phys. Lett. 101, 021601 (2012).
    • (2012) Appl. Phys. Lett. , vol.101 , pp. 021601
    • Chowdhury, Z.R.1    Cho, K.2    Kherani, N.P.3
  • 40
    • 46749130961 scopus 로고    scopus 로고
    • Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology
    • Schultz, O., Mette, A., Hermle, M. & Glunz, S. W. Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology. Prog. Photovolt. Res. Appl. 16, 317-324 (2008).
    • (2008) Prog. Photovolt. Res. Appl. , vol.16 , pp. 317-324
    • Schultz, O.1    Mette, A.2    Hermle, M.3    Glunz, S.W.4
  • 41
    • 84884250812 scopus 로고    scopus 로고
    • Large-area free-standing ultrathin single-crystal silicon as processable materials
    • Wang, S. et al. Large-area free-standing ultrathin single-crystal silicon as processable materials. Nano Lett. 13, 4393-4398 (2013).
    • (2013) Nano Lett. , vol.13 , pp. 4393-4398
    • Wang, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.