메뉴 건너뛰기




Volumn 61, Issue 1-2, 2010, Pages 303-310

Anomaly detection combining one-class SVMs and particle swarm optimization algorithms

Author keywords

Anomaly detection; One class classification; Outlier detection; Particle swarm optimization; Support vector machine

Indexed keywords

ANOMALY DETECTION; BOUNDARY MOVEMENT; DATA SETS; DECISION FUNCTIONS; DETECTION FUNCTIONS; EVALUATION ALGORITHM; FALSE POSITIVE RATES; FEATURE SPACE; HIGH DETECTION RATE; KEY ISSUES; NORMAL BEHAVIOR; OBJECT FUNCTIONS; ONE-CLASS CLASSIFICATION; ONE-CLASS LEARNING; ONE-CLASS SUPPORT VECTOR MACHINE; OUTLIER DETECTION; PARAMETER SELECTION; PARAMETERS OPTIMIZATION; PARTICLE SWARM OPTIMIZATION ALGORITHM; RECEIVER OPERATING CHARACTERISTIC CURVES;

EID: 77954349641     PISSN: 0924090X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11071-009-9650-5     Document Type: Article
Times cited : (45)

References (32)
  • 1
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • 1101.68023 10.1023/B:AIRE.0000045502.10941.a9
    • V. Hodge J. Austin 2004 A survey of outlier detection methodologies Artif. Intell. Rev. 22 2 85 126 1101.68023 10.1023/B:AIRE.0000045502.10941.a9
    • (2004) Artif. Intell. Rev. , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 2
    • 35548978494 scopus 로고    scopus 로고
    • Outlier identification in high dimensions
    • DOI 10.1016/j.csda.2007.05.018, PII S0167947307002204
    • P. Filzmoser R. Maronna M. Werner 2008 Outlier identification in high dimensions Comput. Stat. Data Anal. 52 3 1694 1711 05564597 10.1016/j.csda.2007. 05.018 2422764 (Pubitemid 350017776)
    • (2008) Computational Statistics and Data Analysis , vol.52 , Issue.3 , pp. 1694-1711
    • Filzmoser, P.1    Maronna, R.2    Werner, M.3
  • 4
    • 0000487102 scopus 로고    scopus 로고
    • Estimating the support of a high-dimensional distribution
    • DOI 10.1162/089976601750264965
    • B. Scholkopf J.C. Platt J. Shawe-Taylor A.J. Smola R.C. Williamson 2001 Estimating the support of a high-dimensional distribution Neural Comput. 13 7 1443 1471 10.1162/089976601750264965 (Pubitemid 33595028)
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1443-1471
    • Scholkopf, B.1    Platt, J.C.2    Shawe-Taylor, J.3    Smola, A.J.4    Williamson, R.C.5
  • 5
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • DOI 10.1016/S0167-8655(99)00087-2
    • D.M.J. Tax R.P.W. Duin 1999 Support vector domain description Pattern Recogn. Lett. 20 11-13 1191 1199 10.1016/S0167-8655(99)00087-2 (Pubitemid 32261897)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1191-1199
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 6
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • 1078.68728 10.1023/B:MACH.0000008084.60811.49
    • D.M.J. Tax R.P.W. Duin 2004 Support vector data description Mach. Learn. 54 1 45 66 1078.68728 10.1023/B:MACH.0000008084.60811.49
    • (2004) Mach. Learn. , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 7
    • 33646950083 scopus 로고    scopus 로고
    • An online support vector machine for abnormal events detection
    • DOI 10.1016/j.sigpro.2005.09.027, PII S0165168405003555
    • M. Davy F. Desobry A. Gretton C. Doncarli 2006 An online support vector machine for abnormal events detection Signal Process. 86 8 2009 2025 1172.94394 10.1016/j.sigpro.2005.09.027 (Pubitemid 43795456)
    • (2006) Signal Processing , vol.86 , Issue.8 , pp. 2009-2025
    • Davy, M.1    Desobry, F.2    Gretton, A.3    Doncarli, C.4
  • 8
    • 60249095042 scopus 로고    scopus 로고
    • Fault classifier of rotating machinery based on weighted support vector data description
    • 10.1016/j.eswa.2008.10.062
    • Y. Zhang X.D. Liu F.D. Xie K.Q. Li 2009 Fault classifier of rotating machinery based on weighted support vector data description Expert Syst. Appl. 36 4 7928 7932 10.1016/j.eswa.2008.10.062
    • (2009) Expert Syst. Appl. , vol.36 , Issue.4 , pp. 7928-7932
    • Zhang, Y.1    Liu, X.D.2    Xie, F.D.3    Li, K.Q.4
  • 10
    • 33745235087 scopus 로고    scopus 로고
    • One-class novelty detection for seizure analysis from intracranial eeg
    • 2274396
    • A.B. Gardner A.M. Krieger G. Vachtsevanos B. Litt 2006 One-class novelty detection for seizure analysis from intracranial eeg J. Mach. Learn. Res. 7 1025 1044 2274396
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1025-1044
    • Gardner, A.B.1    Krieger, A.M.2    Vachtsevanos, G.3    Litt, B.4
  • 13
    • 35348821822 scopus 로고    scopus 로고
    • Intrusion detection in computer networks by a modular ensemble of one-class classifiers
    • DOI 10.1016/j.inffus.2006.10.002, PII S1566253506000765, Applications of Ensemble Methods
    • G. Giacinto R. Perdisci M. Del Rio F. Roli 2008 Intrusion detection in computer networks by a modular ensemble of one-class classifiers Inf. Fusion 9 1 69 82 10.1016/j.inffus.2006.10.002 (Pubitemid 47589059)
    • (2008) Information Fusion , vol.9 , Issue.1 , pp. 69-82
    • Giacinto, G.1    Perdisci, R.2    Del Rio, M.3    Roli, F.4
  • 14
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • 10.1016/S0031-3203(96)00142-2
    • A.P. Bradley 1997 The use of the area under the ROC curve in the evaluation of machine learning algorithms Pattern Recogn. 30 7 1145 1159 10.1016/S0031-3203(96)00142-2
    • (1997) Pattern Recogn. , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 19
    • 0345438685 scopus 로고    scopus 로고
    • ROC graphs: Notes and practical considerations for data mining researchers
    • Fawcett, T.: ROC graphs: Notes and practical considerations for data mining researchers. Tech. Rep. (2004)
    • (2004) Tech. Rep.
    • Fawcett, T.1
  • 20
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • 10.1016/j.patrec.2005.10.010 2297626
    • T. Fawcett 2006 An introduction to ROC analysis Pattern Recogn. Lett. 27 8 861 874 10.1016/j.patrec.2005.10.010 2297626
    • (2006) Pattern Recogn. Lett. , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 23
    • 34249816831 scopus 로고    scopus 로고
    • Semisupervised pso-svm regression for biophysical parameter estimation
    • Y. Bazi F. Melgani 2007 Semisupervised pso-svm regression for biophysical parameter estimation IEEE Trans. Geosci. Remote Sens. 45 6 1887-1895
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.6 , pp. 1887-1895
    • Bazi, Y.1    Melgani, F.2
  • 24
    • 51749123574 scopus 로고    scopus 로고
    • Classification of electrocardiogram signals with support vector machines and particle swarm optimization
    • 10.1109/TITB.2008.923147
    • F. Melgani Y. Bazi 2008 Classification of electrocardiogram signals with support vector machines and particle swarm optimization IEEE Trans. Information Technol. Biomed. 12 5 667 677 10.1109/TITB.2008.923147
    • (2008) IEEE Trans. Information Technol. Biomed. , vol.12 , Issue.5 , pp. 667-677
    • Melgani, F.1    Bazi, Y.2
  • 25
    • 51049094206 scopus 로고    scopus 로고
    • Svm based adaptive learning method for text classification from positive and unlabeled documents
    • 10.1007/s10115-007-0107-1
    • T. Peng W.L. Zuo F.L. He 2008 Svm based adaptive learning method for text classification from positive and unlabeled documents Knowl. Inf. Syst. 16 3 281 301 10.1007/s10115-007-0107-1
    • (2008) Knowl. Inf. Syst. , vol.16 , Issue.3 , pp. 281-301
    • Peng, T.1    Zuo, W.L.2    He, F.L.3
  • 26
    • 0041339696 scopus 로고    scopus 로고
    • Modified support vector novelty detector using training data with outliers
    • DOI 10.1016/S0167-8655(03)00093-X
    • L.J. Cao H.P. Lee W.K. Chong 2003 Modified support vector novelty detector using training data with outliers Pattern Recogn. Lett. 24 14 2479 2487 1047.68120 10.1016/S0167-8655(03)00093-X (Pubitemid 36911092)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.14 , pp. 2479-2487
    • Cao, L.J.1    Lee, H.P.2    Chong, W.K.3
  • 27
    • 38749092940 scopus 로고    scopus 로고
    • Novelty detection with constructive probabilistic neural networks
    • 10.1016/j.neucom.2007.11.003
    • A.L.I. Oliveira F.R.G. Costa C.O.S. Filho 2008 Novelty detection with constructive probabilistic neural networks Neurocomputing 71 4-6 1046 1053 10.1016/j.neucom.2007.11.003
    • (2008) Neurocomputing , vol.71 , Issue.46 , pp. 1046-1053
    • Oliveira, A.L.I.1    Costa, F.R.G.2    Filho, C.O.S.3
  • 30
    • 0345404396 scopus 로고    scopus 로고
    • The self-organizing map
    • DOI 10.1016/S0925-2312(98)00030-7, PII S0925231298000307
    • T. Kohonen 1998 The self-organizing map Neurocomputing 21 1-3 1 6 0917.68176 10.1016/S0925-2312(98)00030-7 (Pubitemid 28526808)
    • (1998) Neurocomputing , vol.21 , Issue.1-3 , pp. 1-6
    • Kohonen, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.