메뉴 건너뛰기




Volumn 7, Issue 4, 2014, Pages 1295-1305

Optimizing subspace SVM ensemble for hyperspectral imagery classification

Author keywords

Ensemble; hyperspectral imagery classification; optimal subspace; random subspace; support vector machine (SVM)

Indexed keywords

CLASSIFICATION (OF INFORMATION); IMAGE CLASSIFICATION; IMAGE RECONSTRUCTION; OPTIMIZATION; REMOTE SENSING; SPECTROSCOPY;

EID: 84899990796     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2014.2307356     Document Type: Article
Times cited : (57)

References (54)
  • 1
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • DOI 10.1109/79.974718
    • D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17-28, Jan. 2002. (Pubitemid 34237205)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 3
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • May
    • M. Pal and G. M. Foody, "Feature selection for classification of hyperspectral data by SVM," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2297-2307, May 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 4
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 6
    • 3042654673 scopus 로고    scopus 로고
    • A relative evaluation of multiclass image classification by support vector machines
    • Jun.
    • G. M. Foody and A. Mathur, "A relative evaluation of multiclass image classification by support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 6, pp. 1335-1343, Jun. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.6 , pp. 1335-1343
    • Foody, G.M.1    Mathur, A.2
  • 7
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • DOI 10.1109/TGRS.2006.880628, 1717732
    • Y. Bazi and F. Melgani, "Toward an optimal SVM classification system for hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3374-3385, Nov. 2006. (Pubitemid 44711679)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.11 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 8
    • 84888002808 scopus 로고    scopus 로고
    • A multiple SVM system for classification of hyperspectral remote sensing data
    • Dec.
    • B. Bigdeli, F. Samadzadegan, and P. Reinartz, "A multiple SVM system for classification of hyperspectral remote sensing data," J. Indian Soc. Remote Sens., vol. 41, no. 4, pp. 763-776, Dec. 2013.
    • (2013) J. Indian Soc. Remote Sens. , vol.41 , Issue.4 , pp. 763-776
    • Bigdeli, B.1    Samadzadegan, F.2    Reinartz, P.3
  • 9
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Third Quarter
    • R. Polikar, "Ensemble based systems in decision making," IEEE Circuits and Syst. Mag., vol. 6, no. 3, pp. 21-45, Third Quarter, 2006.
    • (2006) IEEE Circuits and Syst. Mag. , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 10
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 11
    • 84869380911 scopus 로고    scopus 로고
    • Ensemble learning on hyperspectral remote sensing image classification
    • Jul.
    • Q. Wu, L. W. Wang, and J. Wu, "Ensemble learning on hyperspectral remote sensing image classification," Adv. Mater. Res., vol. 546, pp. 508-513, Jul. 2012.
    • (2012) Adv. Mater. Res. , vol.546 , pp. 508-513
    • Wu, Q.1    Wang, L.W.2    Wu, J.3
  • 12
    • 77953871614 scopus 로고    scopus 로고
    • Sensitivity of support vector machines to random feature selection in classification of hyperspectral data
    • Jul.
    • B. Waske et al., "Sensitivity of support vector machines to random feature selection in classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2880-2889, Jul. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.7 , pp. 2880-2889
    • Waske, B.1
  • 13
    • 82055172047 scopus 로고    scopus 로고
    • Feature-based ensemble learning for hyperspectral chemical plume detection
    • Jul.
    • H. Kwon and P. Rauss, "Feature-based ensemble learning for hyperspectral chemical plume detection," Int. J. Remote Sens., vol. 32, no. 21, pp. 6631-6652, Jul. 2011.
    • (2011) Int. J. Remote Sens. , vol.32 , Issue.21 , pp. 6631-6652
    • Kwon, H.1    Rauss, P.2
  • 14
    • 77953872402 scopus 로고    scopus 로고
    • A dynamic subspace method for hyperspectral image classification
    • Jul.
    • J.-M. Yang et al., "A dynamic subspace method for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2840-2853, Jul. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.7 , pp. 2840-2853
    • Yang, J.-M.1
  • 15
    • 0035391738 scopus 로고    scopus 로고
    • Best-bases feature extraction algorithms for classification of hyperspectral data
    • DOI 10.1109/36.934070, PII S0196289201054894
    • S. Kumar, J. Ghosh, and M. M. Crawford, "Best-bases feature extraction algorithms for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1368-1379, Jul. 2001. (Pubitemid 32732653)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.7 , pp. 1368-1379
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 16
    • 84880277002 scopus 로고    scopus 로고
    • Combining multiple classification methods for hyperspectral data interpretation
    • Jun.
    • A. B. Santos, A. de Albuquerque Araujo, and D. Menotti, "Combining multiple classification methods for hyperspectral data interpretation," IEEE Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 3, pp. 1450-1459, Jun. 2013.
    • (2013) IEEE Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.3 , pp. 1450-1459
    • Santos, A.B.1    De Araujo, A.A.2    Menotti, D.3
  • 17
    • 84867678062 scopus 로고    scopus 로고
    • Random subspace method and genetic algorithmapplied to a LS-SVM ensemble
    • Berlin, Germany: Springer
    • C. Padilha, A. D. Neto, and J. Melo, "Random subspace method and genetic algorithmapplied to a LS-SVM ensemble," in Proc. Artificial Neural Netw. Machine Learning-ICANN 2012, Berlin, Germany: Springer, 2012, pp. 164-171.
    • (2012) Proc. Artificial Neural Netw. Machine Learning-ICANN 2012 , pp. 164-171
    • Padilha, C.1    Neto, A.D.2    Melo, J.3
  • 18
    • 79953897708 scopus 로고    scopus 로고
    • A relevance feedback method based on genetic programming for classification of remote sensing images
    • J. A. Dos Santos, C. D. Ferreira, R. S. Torres et al., "A relevance feedback method based on genetic programming for classification of remote sensing images," Inf. Sci., vol. 181, no. 13, pp. 2671-2684, 2011.
    • (2011) Inf. Sci. , vol.181 , Issue.13 , pp. 2671-2684
    • Dos Santos, J.A.1    Ferreira, C.D.2    Torres, R.S.3
  • 19
    • 84893743223 scopus 로고    scopus 로고
    • Aframework for selection and fusion of pattern classifiers in multimedia recognition
    • Apr.
    • F. A. Faria, J. A. dos Santos, A. Rocha et al., "Aframework for selection and fusion of pattern classifiers in multimedia recognition," Pattern Recognit. Lett., vol. 39, pp. 52-64, Apr. 2014.
    • (2014) Pattern Recognit. Lett. , vol.39 , pp. 52-64
    • Faria, F.A.1    Dos Santos, J.A.2    Rocha, A.3
  • 20
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature selection
    • Nov.
    • W. Siedlecki and J. Sklansky, "A note on genetic algorithms for large-scale feature selection," Pattern Recognit. Lett., vol. 10, no. 5, pp. 335-347, Nov. 1989.
    • (1989) Pattern Recognit. Lett. , vol.10 , Issue.5 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 21
    • 84857459505 scopus 로고    scopus 로고
    • Combining pattern classifiers: Methods and algorithms: (Hoboken, NJ: Wiley, 2004)
    • May
    • L. I. Kuncheva, "Combining pattern classifiers: Methods and algorithms: (Hoboken, NJ: Wiley, 2004)," IEEE Trans. Neural Netw., vol. 18, no. 3, p. 964, May 2007.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.3 , pp. 964
    • Kuncheva, L.I.1
  • 22
    • 0041380888 scopus 로고    scopus 로고
    • A genetic-algorithm-based selective principal component analysis (GA-SPCA) method for high-dimensional data feature extraction
    • Jun.
    • H. Yao and L. Tian, "A genetic-algorithm-based selective principal component analysis (GA-SPCA) method for high-dimensional data feature extraction," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 6, pp. 1469-1478, Jun. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.6 , pp. 1469-1478
    • Yao, H.1    Tian, L.2
  • 23
    • 0029407869 scopus 로고
    • An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection
    • Nov.
    • L. Bruzzone, F. Roli, and S. B. Serpico, "An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection," IEEE Trans. Geosci. Remote Sens., vol. 33, no. 6, pp. 1318-1321, Nov. 1995.
    • (1995) IEEE Trans. Geosci. Remote Sens. , vol.33 , Issue.6 , pp. 1318-1321
    • Bruzzone, L.1    Roli, F.2    Serpico, S.B.3
  • 24
    • 48049093694 scopus 로고    scopus 로고
    • Subspace based feature selection for pattern recognition
    • S. Gunal and R. Edizkan, "Subspace based feature selection for pattern recognition," Inf. Sci., vol. 178, no. 19, pp. 3716-3726, 2008.
    • (2008) Inf. Sci. , vol.178 , Issue.19 , pp. 3716-3726
    • Gunal, S.1    Edizkan, R.2
  • 25
    • 0034651854 scopus 로고    scopus 로고
    • A technique for feature selection in multiclass problems
    • L. Bruzzone and S. B. Serpico, "A technique for feature selection in multiclass problems," Int. J. Remote Sens., vol. 21, no. 3, pp. 549-563, 2000. (Pubitemid 30102558)
    • (2000) International Journal of Remote Sensing , vol.21 , Issue.3 , pp. 549-563
    • Bruzzone, L.1    Serpico, S.B.2
  • 26
    • 81355155125 scopus 로고    scopus 로고
    • Neuro-fuzzy-combiner: An effective multiple classifier system
    • A. Ghosh et al., "Neuro-fuzzy-combiner: An effective multiple classifier system," Int. J. Knowl. Eng. Soft Data Paradigms, vol. 2, no. 2, pp. 107-129, 2010.
    • (2010) Int. J. Knowl. Eng. Soft Data Paradigms , vol.2 , Issue.2 , pp. 107-129
    • Ghosh, A.1
  • 27
    • 0031238275 scopus 로고    scopus 로고
    • Application of majority voting to pattern recognition: An analysis of its behavior and performance
    • PII S1083442797062024
    • L. Lam and S. Y. Suen, "Application of majority voting to pattern recognition: An analysis of its behavior and performance," IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans, vol. 27, no. 5, pp. 553-568, 1997. (Pubitemid 127770722)
    • (1997) IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans. , vol.27 , Issue.5 , pp. 553-568
    • Lam, L.1    Suen, C.Y.2
  • 33
    • 33751019565 scopus 로고    scopus 로고
    • An introduction to support vector machines and other kernelbased learning methods
    • T. Zhang, "An introduction to support vector machines and other kernelbased learning methods," AI Mag., vol. 22, no. 2, p. 103, 2001.
    • (2001) AI Mag. , vol.22 , Issue.2 , pp. 103
    • Zhang, T.1
  • 34
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • DOI 10.1109/72.991427, PII S1045922702018052
    • C.-W. Hsu and C.-J. Lin, "A comparison of methods for multiclass support vector machines," IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 415-425, Mar. 2002. (Pubitemid 34475042)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 37
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • A. Jain and D. Zongker, "Feature selection: Evaluation, application, and small sample performance," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 2, pp. 153-158, Feb. 1997. (Pubitemid 127828334)
    • (1997) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1
  • 38
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • DOI 10.1016/S0031-3203(99)00041-2
    • M. Kudo and J. Sklansky, "Comparison of algorithms that select features for pattern classifiers," Pattern Recognit., vol. 33, no. 1, pp. 25-41, Jan. 2000. (Pubitemid 32081876)
    • (2000) Pattern Recognition , vol.33 , Issue.1 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 39
    • 0035391615 scopus 로고    scopus 로고
    • A new search algorithm for feature selection in hyperspectral remote sensing images
    • DOI 10.1109/36.934069, PII S0196289201054997
    • S. B. Serpico and L. Bruzzone, "A new search algorithm for feature selection in hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1360-1367, Jul. 2001. (Pubitemid 32732652)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.7 , pp. 1360-1367
    • Serpico, S.B.1    Bruzzone, L.2
  • 41
    • 0034651854 scopus 로고    scopus 로고
    • A technique for feature selection in multiclass problems
    • L. Bruzzone and S. B. Serpico, "A technique for feature selection in multiclass problems," Int. J. Remote Sens., vol. 21, no. 3, pp. 549-563, 2000. (Pubitemid 30102558)
    • (2000) International Journal of Remote Sensing , vol.21 , Issue.3 , pp. 549-563
    • Bruzzone, L.1    Serpico, S.B.2
  • 43
    • 0032634224 scopus 로고    scopus 로고
    • Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields
    • May
    • B. C. K. Tso and P. M. Mather, "Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 3, pp. 1255-1260, May 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.3 , pp. 1255-1260
    • Tso, B.C.K.1    Mather, P.M.2
  • 44
    • 0035248083 scopus 로고    scopus 로고
    • Pixel classification using variable string genetic algorithms with chromosome differentiation
    • DOI 10.1109/36.905238, PII S019628920101172X
    • S. Bandyopadhyay and S. K. Pal, "Pixel classification using variable string genetic algorithms with chromosome differentiation," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 303-308, Feb. 2001 (Pubitemid 32270993)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.2 , pp. 303-308
    • Bandyopadhyay, S.1    Pal, S.K.2
  • 45
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • DOI 10.1109/TGRS.2004.842481
    • J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, Mar. 2005. (Pubitemid 40320271)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 47
    • 84864119523 scopus 로고    scopus 로고
    • Relationships between diversity of classification ensembles and single-class performance measures
    • Jan.
    • S. Wang and X. Yao, "Relationships between diversity of classification ensembles and single-class performance measures," IEEE Trans. Knowl. Data Eng., vol. 25, no. 1, pp. 206-219, Jan. 2013.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.1 , pp. 206-219
    • Wang, S.1    Yao, X.2
  • 48
    • 84871748730 scopus 로고    scopus 로고
    • An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery
    • Jan.
    • X. Huang and L. Zhang, "An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 1-16, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 1-16
    • Huang, X.1    Zhang, L.2
  • 51
    • 77952046540 scopus 로고    scopus 로고
    • 'Good' and 'bad' diversity in majority vote ensembles
    • Berlin, Germany: Springer0
    • G. Brown and L. I. Kuncheva, "'Good' and 'bad' diversity in majority vote ensembles," Multiple Classifier Systems. Berlin, Germany: Springer, 2010, pp. 124-133.
    • (2010) Multiple Classifier Systems , pp. 124-133
    • Brown, G.1    Kuncheva, L.I.2
  • 52
    • 84884161251 scopus 로고    scopus 로고
    • Ensemble learning
    • New York, NY, USA: Springer
    • R. Polikar, "Ensemble learning," in Ensemble Machine Learning. New York, NY, USA: Springer, 2012, pp. 1-34.
    • (2012) Ensemble Machine Learning , pp. 1-34
    • Polikar, R.1
  • 53
    • 84879849540 scopus 로고    scopus 로고
    • Model for measuring accuracies of majority voting of ensemble classifier withCOBand genetic algorithm
    • S. Site and S. K. Mishra. Model for measuring accuracies of majority voting of ensemble classifier withCOBand genetic algorithm. in Proc. Int. Conf. IEEE Inf. Commun. Embedded Syst. (ICICES),2013:99-103.
    • (2013) Proc. Int. Conf. IEEE Inf. Commun. Embedded Syst. (ICICES) , pp. 99-103
    • Site, S.1    Mishra, S.K.2
  • 54
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • D. Ruta and B. Gabrys, "Classifier selection for majority voting," Inf. Fusion, vol. 6, no. 1, pp. 63-81, 2005.
    • (2005) Inf. Fusion , vol.6 , Issue.1 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.