-
1
-
-
85032751896
-
Hyperspectral image data analysis
-
DOI 10.1109/79.974718
-
D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17-28, Jan. 2002. (Pubitemid 34237205)
-
(2002)
IEEE Signal Processing Magazine
, vol.19
, Issue.1
, pp. 17-28
-
-
Landgrebe, D.1
-
3
-
-
77951295936
-
Feature selection for classification of hyperspectral data by SVM
-
May
-
M. Pal and G. M. Foody, "Feature selection for classification of hyperspectral data by SVM," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2297-2307, May 2010.
-
(2010)
IEEE Trans. Geosci. Remote Sens.
, vol.48
, Issue.5
, pp. 2297-2307
-
-
Pal, M.1
Foody, G.M.2
-
4
-
-
4344614511
-
Classification of hyperspectral remote sensing images with support vector machines
-
Aug.
-
F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.8
, pp. 1778-1790
-
-
Melgani, F.1
Bruzzone, L.2
-
5
-
-
0034546934
-
Support Vector Machines for classification of hyperspectral data
-
J. A. Gualtieri and S. Chettri, "Support vector machines for classification of hyperspectral data," in Proc. IEEE IGARSS, Honolulu, HI, USA, 2000, pp. 813-815. (Pubitemid 32019653)
-
(2000)
International Geoscience and Remote Sensing Symposium (IGARSS)
, vol.2
, pp. 813-815
-
-
Gualtieri, J.A.1
Chettri, S.2
-
6
-
-
3042654673
-
A relative evaluation of multiclass image classification by support vector machines
-
Jun.
-
G. M. Foody and A. Mathur, "A relative evaluation of multiclass image classification by support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 6, pp. 1335-1343, Jun. 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.6
, pp. 1335-1343
-
-
Foody, G.M.1
Mathur, A.2
-
7
-
-
33750798496
-
Toward an optimal SVM classification system for hyperspectral remote sensing images
-
DOI 10.1109/TGRS.2006.880628, 1717732
-
Y. Bazi and F. Melgani, "Toward an optimal SVM classification system for hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3374-3385, Nov. 2006. (Pubitemid 44711679)
-
(2006)
IEEE Transactions on Geoscience and Remote Sensing
, vol.44
, Issue.11
, pp. 3374-3385
-
-
Bazi, Y.1
Melgani, F.2
-
8
-
-
84888002808
-
A multiple SVM system for classification of hyperspectral remote sensing data
-
Dec.
-
B. Bigdeli, F. Samadzadegan, and P. Reinartz, "A multiple SVM system for classification of hyperspectral remote sensing data," J. Indian Soc. Remote Sens., vol. 41, no. 4, pp. 763-776, Dec. 2013.
-
(2013)
J. Indian Soc. Remote Sens.
, vol.41
, Issue.4
, pp. 763-776
-
-
Bigdeli, B.1
Samadzadegan, F.2
Reinartz, P.3
-
9
-
-
33748611921
-
Ensemble based systems in decision making
-
Third Quarter
-
R. Polikar, "Ensemble based systems in decision making," IEEE Circuits and Syst. Mag., vol. 6, no. 3, pp. 21-45, Third Quarter, 2006.
-
(2006)
IEEE Circuits and Syst. Mag.
, vol.6
, Issue.3
, pp. 21-45
-
-
Polikar, R.1
-
10
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996. (Pubitemid 126724382)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
11
-
-
84869380911
-
Ensemble learning on hyperspectral remote sensing image classification
-
Jul.
-
Q. Wu, L. W. Wang, and J. Wu, "Ensemble learning on hyperspectral remote sensing image classification," Adv. Mater. Res., vol. 546, pp. 508-513, Jul. 2012.
-
(2012)
Adv. Mater. Res.
, vol.546
, pp. 508-513
-
-
Wu, Q.1
Wang, L.W.2
Wu, J.3
-
12
-
-
77953871614
-
Sensitivity of support vector machines to random feature selection in classification of hyperspectral data
-
Jul.
-
B. Waske et al., "Sensitivity of support vector machines to random feature selection in classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2880-2889, Jul. 2010.
-
(2010)
IEEE Trans. Geosci. Remote Sens.
, vol.48
, Issue.7
, pp. 2880-2889
-
-
Waske, B.1
-
13
-
-
82055172047
-
Feature-based ensemble learning for hyperspectral chemical plume detection
-
Jul.
-
H. Kwon and P. Rauss, "Feature-based ensemble learning for hyperspectral chemical plume detection," Int. J. Remote Sens., vol. 32, no. 21, pp. 6631-6652, Jul. 2011.
-
(2011)
Int. J. Remote Sens.
, vol.32
, Issue.21
, pp. 6631-6652
-
-
Kwon, H.1
Rauss, P.2
-
14
-
-
77953872402
-
A dynamic subspace method for hyperspectral image classification
-
Jul.
-
J.-M. Yang et al., "A dynamic subspace method for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2840-2853, Jul. 2010.
-
(2010)
IEEE Trans. Geosci. Remote Sens.
, vol.48
, Issue.7
, pp. 2840-2853
-
-
Yang, J.-M.1
-
15
-
-
0035391738
-
Best-bases feature extraction algorithms for classification of hyperspectral data
-
DOI 10.1109/36.934070, PII S0196289201054894
-
S. Kumar, J. Ghosh, and M. M. Crawford, "Best-bases feature extraction algorithms for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1368-1379, Jul. 2001. (Pubitemid 32732653)
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, Issue.7
, pp. 1368-1379
-
-
Kumar, S.1
Ghosh, J.2
Crawford, M.M.3
-
16
-
-
84880277002
-
Combining multiple classification methods for hyperspectral data interpretation
-
Jun.
-
A. B. Santos, A. de Albuquerque Araujo, and D. Menotti, "Combining multiple classification methods for hyperspectral data interpretation," IEEE Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 3, pp. 1450-1459, Jun. 2013.
-
(2013)
IEEE Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.6
, Issue.3
, pp. 1450-1459
-
-
Santos, A.B.1
De Araujo, A.A.2
Menotti, D.3
-
17
-
-
84867678062
-
Random subspace method and genetic algorithmapplied to a LS-SVM ensemble
-
Berlin, Germany: Springer
-
C. Padilha, A. D. Neto, and J. Melo, "Random subspace method and genetic algorithmapplied to a LS-SVM ensemble," in Proc. Artificial Neural Netw. Machine Learning-ICANN 2012, Berlin, Germany: Springer, 2012, pp. 164-171.
-
(2012)
Proc. Artificial Neural Netw. Machine Learning-ICANN 2012
, pp. 164-171
-
-
Padilha, C.1
Neto, A.D.2
Melo, J.3
-
18
-
-
79953897708
-
A relevance feedback method based on genetic programming for classification of remote sensing images
-
J. A. Dos Santos, C. D. Ferreira, R. S. Torres et al., "A relevance feedback method based on genetic programming for classification of remote sensing images," Inf. Sci., vol. 181, no. 13, pp. 2671-2684, 2011.
-
(2011)
Inf. Sci.
, vol.181
, Issue.13
, pp. 2671-2684
-
-
Dos Santos, J.A.1
Ferreira, C.D.2
Torres, R.S.3
-
19
-
-
84893743223
-
Aframework for selection and fusion of pattern classifiers in multimedia recognition
-
Apr.
-
F. A. Faria, J. A. dos Santos, A. Rocha et al., "Aframework for selection and fusion of pattern classifiers in multimedia recognition," Pattern Recognit. Lett., vol. 39, pp. 52-64, Apr. 2014.
-
(2014)
Pattern Recognit. Lett.
, vol.39
, pp. 52-64
-
-
Faria, F.A.1
Dos Santos, J.A.2
Rocha, A.3
-
20
-
-
0024895461
-
A note on genetic algorithms for large-scale feature selection
-
Nov.
-
W. Siedlecki and J. Sklansky, "A note on genetic algorithms for large-scale feature selection," Pattern Recognit. Lett., vol. 10, no. 5, pp. 335-347, Nov. 1989.
-
(1989)
Pattern Recognit. Lett.
, vol.10
, Issue.5
, pp. 335-347
-
-
Siedlecki, W.1
Sklansky, J.2
-
21
-
-
84857459505
-
Combining pattern classifiers: Methods and algorithms: (Hoboken, NJ: Wiley, 2004)
-
May
-
L. I. Kuncheva, "Combining pattern classifiers: Methods and algorithms: (Hoboken, NJ: Wiley, 2004)," IEEE Trans. Neural Netw., vol. 18, no. 3, p. 964, May 2007.
-
(2007)
IEEE Trans. Neural Netw.
, vol.18
, Issue.3
, pp. 964
-
-
Kuncheva, L.I.1
-
22
-
-
0041380888
-
A genetic-algorithm-based selective principal component analysis (GA-SPCA) method for high-dimensional data feature extraction
-
Jun.
-
H. Yao and L. Tian, "A genetic-algorithm-based selective principal component analysis (GA-SPCA) method for high-dimensional data feature extraction," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 6, pp. 1469-1478, Jun. 2003.
-
(2003)
IEEE Trans. Geosci. Remote Sens.
, vol.41
, Issue.6
, pp. 1469-1478
-
-
Yao, H.1
Tian, L.2
-
23
-
-
0029407869
-
An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection
-
Nov.
-
L. Bruzzone, F. Roli, and S. B. Serpico, "An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection," IEEE Trans. Geosci. Remote Sens., vol. 33, no. 6, pp. 1318-1321, Nov. 1995.
-
(1995)
IEEE Trans. Geosci. Remote Sens.
, vol.33
, Issue.6
, pp. 1318-1321
-
-
Bruzzone, L.1
Roli, F.2
Serpico, S.B.3
-
24
-
-
48049093694
-
Subspace based feature selection for pattern recognition
-
S. Gunal and R. Edizkan, "Subspace based feature selection for pattern recognition," Inf. Sci., vol. 178, no. 19, pp. 3716-3726, 2008.
-
(2008)
Inf. Sci.
, vol.178
, Issue.19
, pp. 3716-3726
-
-
Gunal, S.1
Edizkan, R.2
-
25
-
-
0034651854
-
A technique for feature selection in multiclass problems
-
L. Bruzzone and S. B. Serpico, "A technique for feature selection in multiclass problems," Int. J. Remote Sens., vol. 21, no. 3, pp. 549-563, 2000. (Pubitemid 30102558)
-
(2000)
International Journal of Remote Sensing
, vol.21
, Issue.3
, pp. 549-563
-
-
Bruzzone, L.1
Serpico, S.B.2
-
26
-
-
81355155125
-
Neuro-fuzzy-combiner: An effective multiple classifier system
-
A. Ghosh et al., "Neuro-fuzzy-combiner: An effective multiple classifier system," Int. J. Knowl. Eng. Soft Data Paradigms, vol. 2, no. 2, pp. 107-129, 2010.
-
(2010)
Int. J. Knowl. Eng. Soft Data Paradigms
, vol.2
, Issue.2
, pp. 107-129
-
-
Ghosh, A.1
-
27
-
-
0031238275
-
Application of majority voting to pattern recognition: An analysis of its behavior and performance
-
PII S1083442797062024
-
L. Lam and S. Y. Suen, "Application of majority voting to pattern recognition: An analysis of its behavior and performance," IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans, vol. 27, no. 5, pp. 553-568, 1997. (Pubitemid 127770722)
-
(1997)
IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans.
, vol.27
, Issue.5
, pp. 553-568
-
-
Lam, L.1
Suen, C.Y.2
-
28
-
-
0025507176
-
Neural network ensembles
-
L. K. Hansen and P. Salamon, "Neural network ensembles," IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 10, pp. 993-1001, 1990.
-
(1990)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.12
, Issue.10
, pp. 993-1001
-
-
Hansen, L.K.1
Salamon, P.2
-
29
-
-
0000751592
-
Handprinted digit recognition:Acomparison of algorithms
-
Buffalo, NY, USA
-
D. S. Lee and S. N. Srihari, "Handprinted digit recognition: Acomparison of algorithms," in Proc. 3rd Int. Workshop Frontiers Handwriting Recognit., Buffalo, NY, USA, 1993, pp. 153-162.
-
(1993)
Proc. 3rd Int. Workshop Frontiers Handwriting Recognit
, pp. 153-162
-
-
Lee, D.S.1
Srihari, S.N.2
-
32
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers," in Proc. 5th Annu. Workshop Comput. Learn. Theory, ACM, 1992.
-
(1992)
Proc. 5th Annu. Workshop Comput. Learn. Theory, ACM
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
33
-
-
33751019565
-
An introduction to support vector machines and other kernelbased learning methods
-
T. Zhang, "An introduction to support vector machines and other kernelbased learning methods," AI Mag., vol. 22, no. 2, p. 103, 2001.
-
(2001)
AI Mag.
, vol.22
, Issue.2
, pp. 103
-
-
Zhang, T.1
-
34
-
-
0036505670
-
A comparison of methods for multiclass support vector machines
-
DOI 10.1109/72.991427, PII S1045922702018052
-
C.-W. Hsu and C.-J. Lin, "A comparison of methods for multiclass support vector machines," IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 415-425, Mar. 2002. (Pubitemid 34475042)
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.2
, pp. 415-425
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
37
-
-
0031078007
-
Feature selection: Evaluation, application, and small sample performance
-
A. Jain and D. Zongker, "Feature selection: Evaluation, application, and small sample performance," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 2, pp. 153-158, Feb. 1997. (Pubitemid 127828334)
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.2
, pp. 153-158
-
-
Jain, A.1
-
38
-
-
0033640901
-
Comparison of algorithms that select features for pattern classifiers
-
DOI 10.1016/S0031-3203(99)00041-2
-
M. Kudo and J. Sklansky, "Comparison of algorithms that select features for pattern classifiers," Pattern Recognit., vol. 33, no. 1, pp. 25-41, Jan. 2000. (Pubitemid 32081876)
-
(2000)
Pattern Recognition
, vol.33
, Issue.1
, pp. 25-41
-
-
Kudo, M.1
Sklansky, J.2
-
39
-
-
0035391615
-
A new search algorithm for feature selection in hyperspectral remote sensing images
-
DOI 10.1109/36.934069, PII S0196289201054997
-
S. B. Serpico and L. Bruzzone, "A new search algorithm for feature selection in hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1360-1367, Jul. 2001. (Pubitemid 32732652)
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, Issue.7
, pp. 1360-1367
-
-
Serpico, S.B.1
Bruzzone, L.2
-
41
-
-
0034651854
-
A technique for feature selection in multiclass problems
-
L. Bruzzone and S. B. Serpico, "A technique for feature selection in multiclass problems," Int. J. Remote Sens., vol. 21, no. 3, pp. 549-563, 2000. (Pubitemid 30102558)
-
(2000)
International Journal of Remote Sensing
, vol.21
, Issue.3
, pp. 549-563
-
-
Bruzzone, L.1
Serpico, S.B.2
-
42
-
-
0003722376
-
-
Reading, MA, USA: Addison-Wesley
-
D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA, USA: Addison-Wesley, 1989.
-
(1989)
Genetic Algorithms in Search, Optimization, and Machine Learning
-
-
Goldberg, D.E.1
-
43
-
-
0032634224
-
Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields
-
May
-
B. C. K. Tso and P. M. Mather, "Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 3, pp. 1255-1260, May 1999.
-
(1999)
IEEE Trans. Geosci. Remote Sens.
, vol.37
, Issue.3
, pp. 1255-1260
-
-
Tso, B.C.K.1
Mather, P.M.2
-
44
-
-
0035248083
-
Pixel classification using variable string genetic algorithms with chromosome differentiation
-
DOI 10.1109/36.905238, PII S019628920101172X
-
S. Bandyopadhyay and S. K. Pal, "Pixel classification using variable string genetic algorithms with chromosome differentiation," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 303-308, Feb. 2001 (Pubitemid 32270993)
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, Issue.2
, pp. 303-308
-
-
Bandyopadhyay, S.1
Pal, S.K.2
-
45
-
-
14644421528
-
Investigation of the random forest framework for classification of hyperspectral data
-
DOI 10.1109/TGRS.2004.842481
-
J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, Mar. 2005. (Pubitemid 40320271)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.3
, pp. 492-501
-
-
Ham, J.1
Chen, Y.2
Crawford, M.M.3
Ghosh, J.4
-
46
-
-
79951612795
-
A random feature selection approach for neural network ensembles: Considering diversity
-
C. Junfei, W. Qingfeng, and D. Huailin, "A random feature selection approach for neural network ensembles: Considering diversity," in Proc. IEEE Int. Conf. Comput. Intell. Software Eng. (CiSE), 2010, pp. 1-4.
-
(2010)
Proc. IEEE Int. Conf. Comput. Intell. Software Eng. (CiSE)
, pp. 1-4
-
-
Junfei, C.1
Qingfeng, W.2
Huailin, D.3
-
47
-
-
84864119523
-
Relationships between diversity of classification ensembles and single-class performance measures
-
Jan.
-
S. Wang and X. Yao, "Relationships between diversity of classification ensembles and single-class performance measures," IEEE Trans. Knowl. Data Eng., vol. 25, no. 1, pp. 206-219, Jan. 2013.
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.1
, pp. 206-219
-
-
Wang, S.1
Yao, X.2
-
48
-
-
84871748730
-
An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery
-
Jan.
-
X. Huang and L. Zhang, "An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 1-16, Jan. 2013.
-
(2013)
IEEE Trans. Geosci. Remote Sens.
, vol.51
, Issue.1
, pp. 1-16
-
-
Huang, X.1
Zhang, L.2
-
49
-
-
84892590567
-
Nature-inspired framework for hyperspectral band selection
-
Apr.
-
R. Y. M. Nakamura, L. M. G. Fonseca, J. A. dos Santos, R. da S Torres, X.-S. Yang, and J. P. Papa, "Nature-inspired framework for hyperspectral band selection," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 4, pp. 2126-2137, Apr. 2014.
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, Issue.4
, pp. 2126-2137
-
-
Nakamura, R.Y.M.1
Fonseca, L.M.G.2
Dos Santos, J.A.3
Da S Torres, R.4
Yang, X.-S.5
Papa, J.P.6
-
50
-
-
72049126115
-
Hyperspectral data classification using an ensemble of class-dependent neural networks
-
Aug.
-
P. R. Marpu, P. Gamba, and I. Niemeyer, "Hyperspectral data classification using an ensemble of class-dependent neural networks," in Proc. Hyperspectral Image Signal Process.: Evol. Remote Sens., Aug. 2009, pp. 1-4.
-
(2009)
Proc. Hyperspectral Image Signal Process.: Evol. Remote Sens
, pp. 1-4
-
-
Marpu, P.R.1
Gamba, P.2
Niemeyer, I.3
-
51
-
-
77952046540
-
'Good' and 'bad' diversity in majority vote ensembles
-
Berlin, Germany: Springer0
-
G. Brown and L. I. Kuncheva, "'Good' and 'bad' diversity in majority vote ensembles," Multiple Classifier Systems. Berlin, Germany: Springer, 2010, pp. 124-133.
-
(2010)
Multiple Classifier Systems
, pp. 124-133
-
-
Brown, G.1
Kuncheva, L.I.2
-
52
-
-
84884161251
-
Ensemble learning
-
New York, NY, USA: Springer
-
R. Polikar, "Ensemble learning," in Ensemble Machine Learning. New York, NY, USA: Springer, 2012, pp. 1-34.
-
(2012)
Ensemble Machine Learning
, pp. 1-34
-
-
Polikar, R.1
-
53
-
-
84879849540
-
Model for measuring accuracies of majority voting of ensemble classifier withCOBand genetic algorithm
-
S. Site and S. K. Mishra. Model for measuring accuracies of majority voting of ensemble classifier withCOBand genetic algorithm. in Proc. Int. Conf. IEEE Inf. Commun. Embedded Syst. (ICICES),2013:99-103.
-
(2013)
Proc. Int. Conf. IEEE Inf. Commun. Embedded Syst. (ICICES)
, pp. 99-103
-
-
Site, S.1
Mishra, S.K.2
-
54
-
-
10444224737
-
Classifier selection for majority voting
-
D. Ruta and B. Gabrys, "Classifier selection for majority voting," Inf. Fusion, vol. 6, no. 1, pp. 63-81, 2005.
-
(2005)
Inf. Fusion
, vol.6
, Issue.1
, pp. 63-81
-
-
Ruta, D.1
Gabrys, B.2
|