메뉴 건너뛰기




Volumn 41, Issue 4, 2013, Pages 763-776

A Multiple SVM System for Classification of Hyperspectral Remote Sensing Data

Author keywords

Bayesian Theory; Hyperspectral; Multiple Classifier System; Support Vector Machine

Indexed keywords

BAYESIAN ANALYSIS; DATA SET; IMAGE CLASSIFICATION; REMOTE SENSING; SATELLITE DATA; SATELLITE IMAGERY; TRAINING;

EID: 84888002808     PISSN: 0255660X     EISSN: 09743006     Source Type: Journal    
DOI: 10.1007/s12524-013-0286-z     Document Type: Article
Times cited : (41)

References (27)
  • 6
    • 0037696635 scopus 로고    scopus 로고
    • Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn
    • Goel, P. K., Prasher, S. O., Patel, R. M., Landry, J. A., Bonnel, R. B., & Viau, A. A. (2003). Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Computers and Electronics in Agriculture, 39(2), 67-93.
    • (2003) Computers and Electronics in Agriculture , vol.39 , Issue.2 , pp. 67-93
    • Goel, P.K.1    Prasher, S.O.2    Patel, R.M.3    Landry, J.A.4    Bonnel, R.B.5    Viau, A.A.6
  • 12
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensemble and their relationship with the ensemble accuracy
    • Kuncheva, L., & Whitaker, C. (2003). Measures of diversity in classifier ensemble and their relationship with the ensemble accuracy. Machine Learning, 51(2), 181-207.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 13
    • 77957990796 scopus 로고    scopus 로고
    • An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine
    • Li, S., Wu, H., Wan, D., & Zhu, J. (2011). An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine. Knowledge-Based Systems, 24(1), 40-48.
    • (2011) Knowledge-Based Systems , vol.24 , Issue.1 , pp. 40-48
    • Li, S.1    Wu, H.2    Wan, D.3    Zhu, J.4
  • 15
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transaction on Geosciences and Remote Sensing, 42(8), 1778-1790.
    • (2004) IEEE Transaction on Geosciences and Remote Sensing , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 17
    • 53349127642 scopus 로고    scopus 로고
    • Decision fusion with confidence based weight assignment for hyperspectral target recognition
    • Prasad, S., & Bruce, L. M. (2008). Decision fusion with confidence based weight assignment for hyperspectral target recognition. IEEE Transaction on Geosciences and Remote Sensing, 46(5), 1448-1456.
    • (2008) IEEE Transaction on Geosciences and Remote Sensing , vol.46 , Issue.5 , pp. 1448-1456
    • Prasad, S.1    Bruce, L.M.2
  • 18
  • 19
    • 0005946314 scopus 로고    scopus 로고
    • An overview of classifier fusion methods
    • Ruta, D., & Gabrys, B. (2000). An overview of classifier fusion methods. Computing and Information Systems, 7(1), 1-10.
    • (2000) Computing and Information Systems , vol.7 , Issue.1 , pp. 1-10
    • Ruta, D.1    Gabrys, B.2
  • 24
    • 45849101525 scopus 로고    scopus 로고
    • Classifying multilevel imagery from SAR and optical sensors by decision fusion
    • Waske, B., & van der Linden, S. (2008). Classifying multilevel imagery from SAR and optical sensors by decision fusion. IEEE Transactions on Geosciences and Remote Sensing, 46(5), 1457-1466.
    • (2008) IEEE Transactions on Geosciences and Remote Sensing , vol.46 , Issue.5 , pp. 1457-1466
    • Waske, B.1    van der Linden, S.2
  • 25
    • 21444437262 scopus 로고    scopus 로고
    • Support vector machines for classification of multi- and hyperspectral data
    • In P. K. Varshney & M. K. Arora (Eds.), Springer-Verlag
    • Watanachaturaporn, P., & Arora, M. K. (2004). Support vector machines for classification of multi- and hyperspectral data. In P. K. Varshney & M. K. Arora (Eds.), Advanced image processing techniques for remotely sensed hyperspectral data (pp. 237-255): Springer-Verlag.
    • (2004) Advanced image processing techniques for remotely sensed hyperspectral data , pp. 237-255
    • Watanachaturaporn, P.1    Arora, M.K.2
  • 27
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • Xu, L., Krzyzak, A., & Suen, C. Y. (1992). Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Transactions on Systems, Man, and Cybernetics, 22(3), 418-435.
    • (1992) IEEE Transactions on Systems, Man, and Cybernetics , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.