메뉴 건너뛰기




Volumn 61, Issue 1, 2010, Pages 61-73

Manifold based local classifiers: Linear and nonlinear approaches

Author keywords

Affine hull; Common vector; Convex hull; Distance learning; Image categorization; Local classifier; Manifold learning; Object recognition

Indexed keywords

AFFINE HULL; COMMON VECTORS; CONVEX HULL; IMAGE CATEGORIZATION; LOCAL CLASSIFIER; MANIFOLD LEARNING;

EID: 78650309274     PISSN: 19398018     EISSN: 19398115     Source Type: Journal    
DOI: 10.1007/s11265-008-0313-4     Document Type: Article
Times cited : (15)

References (35)
  • 2
    • 0042024924 scopus 로고    scopus 로고
    • LDA/SVM driven nearest neighbor classification
    • doi:10.1109/TNN.2003.813835
    • Peng, J., Heisterkamp, D. R., & Dai, H. K. (2003). LDA/SVM Driven Nearest Neighbor Classification. IEEE Trans Neural Netw, 14, 940-942. doi:10.1109/TNN.2003.813835.
    • (2003) IEEE Trans Neural Netw , vol.14 , pp. 940-942
    • Peng, J.1    Heisterkamp, D.R.2    Dai, H.K.3
  • 4
    • 11144330519 scopus 로고    scopus 로고
    • K-local hyperplane and convex distance nearest neighbor algorithms
    • Vincent, P., & Bengio, Y. (2001). K-local hyperplane and convex distance nearest neighbor algorithms. Adv Neural Inf Process Syst, 14, 985-992.
    • (2001) Adv Neural Inf Process Syst , vol.14 , pp. 985-992
    • Vincent, P.1    Bengio, Y.2
  • 7
    • 3042573893 scopus 로고    scopus 로고
    • Adaptive quasiconformal kernel nearest neighbor classification
    • doi:10.1109/TPAMI.2004. 1273978
    • Peng, J., Heisterkamp, D. R., & Dai, H. K. (2004). Adaptive quasiconformal kernel nearest neighbor classification. IEEE Trans Pattern Anal Mach Intell, 28, 656-661. doi:10.1109/TPAMI.2004. 1273978.
    • (2004) IEEE Trans Pattern Anal Mach Intell , vol.28 , pp. 656-661
    • Peng, J.1    Heisterkamp, D.R.2    Dai, H.K.3
  • 8
    • 0036709369 scopus 로고    scopus 로고
    • Locally adaptive metric nearest-neighbor classification
    • doi:10.1109/TPAML 2002.1033219
    • Domeniconi, C., Peng, J., & Gunopulos, D. (2002). Locally adaptive metric nearest-neighbor classification. IEEE Trans Pattern Anal Mach Intell, 24, 1281-1285. doi:10.1109/TPAML 2002.1033219.
    • (2002) IEEE Trans Pattern Anal Mach Intell , vol.24 , pp. 1281-1285
    • Domeniconi, C.1    Peng, J.2    Gunopulos, D.3
  • 10
    • 0030737323 scopus 로고    scopus 로고
    • Modeling the manifolds of images of handwritten digits
    • PII S1045922797002373
    • Hinton, G. E., Dayan, P., & Revow, M. (1997). Modeling the manifolds of images of handwritten digits. IEEE Trans Neural Netw, 18, 65-74. doi:10.1109/72.554192. (Pubitemid 127767781)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.1 , pp. 65-74
    • Hinton, G.E.1    Dayan, P.2    Revow, M.3
  • 11
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323-2326. doi:10.1126/science.290.5500.2323. (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 12
    • 33748149588 scopus 로고    scopus 로고
    • Learning non-linear image manifolds by global alignment of local linear models
    • Verbeek, J. (2006). Learning non-linear image manifolds by global alignment of local linear models. IEEE Trans PAMI, 28, 1236-1250.
    • (2006) IEEE Trans PAMI , vol.28 , pp. 1236-1250
    • Verbeek, J.1
  • 14
    • 15044364586 scopus 로고    scopus 로고
    • Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image
    • DOI 10.1109/TPAMI.2005.58
    • Kim, T.-K., & Kittler, J. (2005). Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image. IEEE Trans PAMI, 27, 318-327. (Pubitemid 40377325)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.3 , pp. 318-327
    • Kim, T.-K.1    Kittler, J.2
  • 17
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • Tenenbaum, J. B., Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319-2323. doi:10.1126/science.290.5500.2319. (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 18
    • 0035440011 scopus 로고    scopus 로고
    • The common vector approach and its relation to principal component analysis
    • DOI 10.1109/89.943343, PII S106366760107434X
    • Gulmezoglu, M. B., Dzhafarov, V., & Barkana, A. (2001). The common vector approach and its relation to principal component analysis. IEEE Trans Speech Audio Process, 9(6), 655-662. doi:10.1109/89.943343. (Pubitemid 32945712)
    • (2001) IEEE Transactions on Speech and Audio Processing , vol.9 , Issue.6 , pp. 655-662
    • Bilginer, G.M.1    Dzhafarov, V.2    Barkana, A.3
  • 19
    • 0004055894 scopus 로고    scopus 로고
    • Cambridge, UK: Cambridge University Press
    • Boyd, S. (2004). Convex optimization pp. 399-401. Cambridge, UK: Cambridge University Press.
    • (2004) Convex Optimization. , pp. 399-401
    • Boyd, S.1
  • 20
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • Schölkopf, B., Smola, A. J., & Muller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput, 10, 1299-1319. doi: 10.1162/089976698300017467. (Pubitemid 128463674)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 21
    • 34547096127 scopus 로고    scopus 로고
    • Discriminative common vector method with kernels
    • DOI 10.1109/TNN.2006.881485
    • Cevikalp, H., Neamtu, M., & Wilkes, M. (2006). Discriminative common vector method with kernels. IEEE Trans Neural Netw, 17, 1550-1565. doi:10.1109/TNN.2006.881485. (Pubitemid 44824267)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.6 , pp. 1550-1565
    • Cevikalp, H.1    Neamtu, M.2    Wilkes, M.3
  • 22
    • 0036016141 scopus 로고    scopus 로고
    • The method of alternating projections and the method of subspace corrections in hilbert space
    • doi:10.1090/S0894-0347-02-00398-3
    • Xu, J., & Zikatanov, L. (2002). The method of alternating projections and the method of subspace corrections in hilbert space. JAm Math Soc, 15, 573-597. doi:10.1090/S0894-0347-02-00398-3.
    • (2002) JAm Math Soc , vol.15 , pp. 573-597
    • Xu, J.1    Zikatanov, L.2
  • 24
    • 84864163177 scopus 로고    scopus 로고
    • USPS dataset of handwritten characters created by the US Postal Service. Retrieved from
    • USPS dataset of handwritten characters created by the US Postal Service. Retrieved from ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data.
  • 26
    • 84864163174 scopus 로고    scopus 로고
    • C codes for computing tangent distances. Retrieved from
    • C codes for computing tangent distances. Retrieved from http:// www-i6.informatik.rwth-aachen.de/~keysers/td/.
  • 27
    • 0004236492 scopus 로고    scopus 로고
    • 3rd ed.. Baltimore, MD: Johns Hopkins University Press
    • Golub, G. H., & Loan, C. F.-V. (1996). Matrix computations (3rd ed.). Baltimore, MD: Johns Hopkins University Press.
    • (1996) Matrix Computations
    • Golub, G.H.1    Loan, C.F.-V.2
  • 28
    • 84864172419 scopus 로고    scopus 로고
    • UCI-benchmark repository-a huge collection of artificial and real world data sets. University of California Irvine. Retrieved from
    • UCI-benchmark repository-a huge collection of artificial and real world data sets. University of California Irvine. Retrieved from http://www.ics.edu/ ~mlearn/MLRepository.html.
  • 32
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • Saul, L. K., & Roweis, S. T. (2003). Think globally, fit locally: unsupervised learning of low dimensional manifolds. J Mach Learn Res, 4, 119-155.
    • (2003) J Mach Learn Res , vol.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 33
    • 78649400333 scopus 로고    scopus 로고
    • Maximum likelihood estimation of intrinsic dimension
    • L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Cambridge, MA: MIT Press
    • Levina, E., & Bickel, P. J. (2005). Maximum likelihood estimation of intrinsic dimension. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing system, 17 (pp. 777-784). Cambridge, MA: MIT Press.
    • (2005) Advances in Neural Information Processing System , vol.17 , pp. 777-784
    • Levina, E.1    Bickel, P.J.2
  • 34
    • 0036807213 scopus 로고    scopus 로고
    • Estimating the intrinsic dimension of data with a fractal-based method
    • doi:10.1109/ TPAMI.2002.1039212
    • Camastra, F., & Vinciarelli, A. (2002). Estimating the intrinsic dimension of data with a fractal-based method. IEEE Trans Pattern Anal Mach Intell, 24(10), 1404-1407. doi:10.1109/ TPAMI.2002.1039212.
    • (2002) IEEE Trans Pattern Anal Mach Intell , vol.24 , Issue.10 , pp. 1404-1407
    • Camastra, F.1    Vinciarelli, A.2
  • 35
    • 0015011520 scopus 로고
    • An algorithm for finding intrinsic dimensionality of data
    • doi:10.1109/T-C.1971.223208
    • Fukunaga, K., & Olsen, D. R. (1971). An algorithm for finding intrinsic dimensionality of data. IEEE Trans Comput, C-20, 176-183. doi:10.1109/T-C.1971.223208.
    • (1971) IEEE Trans Comput , vol.C-20 , pp. 176-183
    • Fukunaga, K.1    Olsen, D.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.