-
1
-
-
77949640018
-
A restricted isometry property for structurally-subsampled unitary matrices
-
Piscataway, NJ: IEEE
-
Bajwa, W. U., Sayeed, A. M., & Nowak, R. (2009). A restricted isometry property for structurally-subsampled unitary matrices. In Proceedings of the 47th Annual Allerton Conference on Communication, Control, and Computing (pp. 1005-1012). Piscataway, NJ: IEEE.
-
(2009)
Proceedings of the 47th Annual Allerton Conference on Communication, Control, and Computing
, pp. 1005-1012
-
-
Bajwa, W.U.1
Sayeed, A.M.2
Nowak, R.3
-
2
-
-
84870977024
-
Convergence and rate analysis of neural networks for sparse approximation
-
Balavoine, A., Romberg, J., & Rozell, C. J. (2012). Convergence and rate analysis of neural networks for sparse approximation. IEEE Transactions on Neural Networks and Learning Systems, 23, 1377-1389.
-
(2012)
IEEE Transactions on Neural Networks and Learning Systems
, vol.23
, pp. 1377-1389
-
-
Balavoine, A.1
Romberg, J.2
Rozell, C.J.3
-
3
-
-
84883455726
-
Convergence speed of a dynamical system for sparse recovery
-
Balavoine, A., Rozell, C. J., & Romberg, J. (2013). Convergence speed of a dynamical system for sparse recovery. IEEE Transactions on Signal Processing, 61, 4259-4269.
-
(2013)
IEEE Transactions on Signal Processing
, vol.61
, pp. 4259-4269
-
-
Balavoine, A.1
Rozell, C.J.2
Romberg, J.3
-
4
-
-
0000235696
-
Internal representations for associative memory
-
Baum, E. B., Moody, J., & Wilczek, F. (1988). Internal representations for associative memory. Biological Cybernetics, 92, 217-228.
-
(1988)
Biological Cybernetics
, vol.92
, pp. 217-228
-
-
Baum, E.B.1
Moody, J.2
Wilczek, F.3
-
5
-
-
84856004485
-
Templates for convex cone problemswith applications to sparse signal recovery
-
Becker, S., Candes, E. J.,&Grant,M. (2011). Templates for convex cone problemswith applications to sparse signal recovery. Mathematical Programming Computation, 3.
-
(2011)
Mathematical Programming Computation
, pp. 3
-
-
Becker, S.1
Candes, E.J.2
Grant, M.3
-
6
-
-
58549091090
-
State-dependent computations: Spatiotemporal processing in cortical networks
-
Buonomano, D. V., & Maass, W. (2009). State-dependent computations: Spatiotemporal processing in cortical networks. Nature Reviews Neuroscience, 10, 113-125.
-
(2009)
Nature Reviews Neuroscience
, vol.10
, pp. 113-125
-
-
Buonomano, D.V.1
Maass, W.2
-
7
-
-
77953355233
-
Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons
-
Büsing, L., Schrauwen, B., & Legenstein, R. (2010). Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural Computation, 22, 1272-1311.
-
(2010)
Neural Computation
, vol.22
, pp. 1272-1311
-
-
Büsing, L.1
Schrauwen, B.2
Legenstein, R.3
-
8
-
-
84878104490
-
Compressive sampling
-
Zurich: European Mathematical Society Publishing House
-
Candes, E. J. (2006). Compressive sampling. In Proc. Int. Congr.Mathematicians (vol. 3, pp. 1433-1452). Zurich: European Mathematical Society Publishing House.
-
(2006)
Proc. Int. Congr.Mathematicians
, vol.3
, pp. 1433-1452
-
-
Candes, E.J.1
-
9
-
-
31744440684
-
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
-
Candes, E. J., Romberg, J.,&Tao, T. (2006).Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52, 489-509.
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, pp. 489-509
-
-
Candes, E.J.1
Romberg, J.2
Tao, T.3
-
10
-
-
33947416035
-
Near-optimal signal recovery fromrandom projections: Universal encoding strategies?
-
Candes, E. J.,&Tao, T. (2006).Near-optimal signal recovery fromrandom projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52, 5406-5425.
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, pp. 5406-5425
-
-
Candes, E.J.1
Tao, T.2
-
11
-
-
77949735239
-
Signal processing with compressive measurements
-
Davenport, M. A., Boufounos, P. T., Wakin, M. B., & Baraniuk, R. G. (2010). Signal processing with compressive measurements. IEEE J. Sel. Topics Signal Process., 4, 445-460.
-
(2010)
IEEE J. Sel. Topics Signal Process.
, vol.4
, pp. 445-460
-
-
Davenport, M.A.1
Boufounos, P.T.2
Wakin, M.B.3
Baraniuk, R.G.4
-
15
-
-
84888995014
-
The restricted isometry property for random block diagonal matrices
-
(in press)
-
Eftekhari,A.,Yap, H. L.,Rozell, C. J.,&Wakin, M. B. (in press).The restricted isometry property for random block diagonal matrices. Applied and ComputationalHarmonic Analysis.
-
Applied and ComputationalHarmonic Analysis
-
-
Eftekhari, A.1
Yap, H.L.2
Rozell, C.J.3
Wakin, M.B.4
-
16
-
-
77952740831
-
On the role of sparse and redundant representations in image processing
-
Elad, M., Figueiredo, M., & Ma, Y. (2008). On the role of sparse and redundant representations in image processing. In Proceedings of the IEEE, 98, 972-982.
-
(2008)
Proceedings of the IEEE
, vol.98
, pp. 972-982
-
-
Elad, M.1
Figueiredo, M.2
Ma, Y.3
-
17
-
-
57749113625
-
Memory traces in dynamical systems
-
Ganguli, S.,Huh,D.,&Sompolinsky, H. (2008).Memory traces in dynamical systems. Proceedings of the National Academy of Sciences, 105, 18970-18975.
-
(2008)
Proceedings of the National Academy of Sciences
, vol.105
, pp. 18970-18975
-
-
Ganguli, S.1
Huh, D.2
Sompolinsky, H.3
-
18
-
-
85162050505
-
Short-term memory in neuronal networks through dynamical compressed sensing
-
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Red Hook, NY: Curran
-
Ganguli, S., & Sompolinsky, H. (2010). Short-term memory in neuronal networks through dynamical compressed sensing. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Neural information processing systems, 23. Red Hook, NY: Curran.
-
(2010)
Neural information processing systems, 23
-
-
Ganguli, S.1
Sompolinsky, H.2
-
19
-
-
84862682946
-
Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis
-
Ganguli, S., & Sompolinsky, H. (2012). Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. Annual Review of Neuroscience, 35, 485-508.
-
(2012)
Annual Review of Neuroscience
, vol.35
, pp. 485-508
-
-
Ganguli, S.1
Sompolinsky, H.2
-
20
-
-
77956563404
-
Toeplitz compressed sensing matrices with applications to sparse channel estimation
-
Haupt, J., Bajwa, W. U., Raz, G., & Nowak, R. (2010). Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Transactions on Information Theory, 56, 5862-5875.
-
(2010)
IEEE Transactions on Information Theory
, vol.56
, pp. 5862-5875
-
-
Haupt, J.1
Bajwa, W.U.2
Raz, G.3
Nowak, R.4
-
21
-
-
76849110605
-
Memory in linear recurrent neural networks in continuous time
-
Hermans, M., & Schrauwen, B. (2010). Memory in linear recurrent neural networks in continuous time. Neural Networks, 23, 341-355.
-
(2010)
Neural Networks
, vol.23
, pp. 341-355
-
-
Hermans, M.1
Schrauwen, B.2
-
22
-
-
84874201093
-
A network of spiking neurons for computing sparse representations in an energy-efficient way
-
Hu, T., Genkin, A., & Chklovskii, D. B. (2012). A network of spiking neurons for computing sparse representations in an energy-efficient way. Neural Computation, 24, 2852-2872.
-
(2012)
Neural Computation
, vol.24
, pp. 2852-2872
-
-
Hu, T.1
Genkin, A.2
Chklovskii, D.B.3
-
23
-
-
85161987501
-
Deciphering subsampled data: Adaptive compressive sampling as a principle of brain communication
-
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Red Hook, NY: Curran
-
Isley, G., Hillar, C. J.,&Sommer, F. T. (2011).Deciphering subsampled data: Adaptive compressive sampling as a principle of brain communication. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Advances in neural information processing systems, 23. Red Hook, NY: Curran.
-
(2011)
Advances in neural information processing systems
, vol.23
-
-
Isley, G.1
Hillar, C.J.2
Sommer, F.T.3
-
24
-
-
1842488370
-
-
(GMD Report 152). St. Augustin: German National Research Center for Information Technology
-
Jaeger, H. (2001). Short term memory in echo state networks (GMD Report 152). St. Augustin: German National Research Center for Information Technology.
-
(2001)
Short term memory in echo state networks
-
-
Jaeger, H.1
-
25
-
-
1842421269
-
Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
-
Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304, 78-80.
-
(2004)
Science
, vol.304
, pp. 78-80
-
-
Jaeger, H.1
Haas, H.2
-
28
-
-
33846543881
-
Edge of chaos and prediction of computational performance for neural circuit models
-
Legenstein, R., & Maass, W. (2007). Edge of chaos and prediction of computational performance for neural circuit models. Neural Networks, 20, 323- 334.
-
(2007)
Neural Networks
, vol.20
, pp. 323-334
-
-
Legenstein, R.1
Maass, W.2
-
29
-
-
0036834701
-
Real-time computing without stable states: A new framework for neural computation based on perturbations
-
Maass, W., Natschl̈ager, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14, 2531-2560.
-
(2002)
Neural Computation
, vol.14
, pp. 2531-2560
-
-
Maass, W.1
Natschl̈ager, T.2
Markram, H.3
-
30
-
-
28844437452
-
Signal buffering in random networks of spiking neurons: Microscopic versus macroscopic phenomena
-
Mayor, J.,&Gerstner,W. (2005). Signal buffering in random networks of spiking neurons: Microscopic versus macroscopic phenomena. Physical Review E, 72, 051906.
-
(2005)
Physical Review E
, vol.72
, pp. 051906
-
-
Mayor, J.1
Gerstner, W.2
-
31
-
-
40849102598
-
Synaptic theory of working memory
-
Mongillo, G., Barak, O., & Tsodyks, M. (2008). Synaptic theory of working memory. Science, 319, 1543-1546.
-
(2008)
Science
, vol.319
, pp. 1543-1546
-
-
Mongillo, G.1
Barak, O.2
Tsodyks, M.3
-
32
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
Olshausen, B. A., & Field, D. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607-609.
-
(1996)
Nature
, vol.381
, pp. 607-609
-
-
Olshausen, B.A.1
Field, D.2
-
33
-
-
81455136681
-
Concentration of measure for block diagonal matrices with applications to compressive signal processing
-
Park, J. Y., Yap, H. L., Rozell, C. J., & Wakin, M. B. (2011). Concentration of measure for block diagonal matrices with applications to compressive signal processing. IEEE Transactions on Signal Processing, 59, 5859-5875.
-
(2011)
IEEE Transactions on Signal Processing
, vol.59
, pp. 5859-5875
-
-
Park, J.Y.1
Yap, H.L.2
Rozell, C.J.3
Wakin, M.B.4
-
35
-
-
33847100046
-
A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields
-
Rhen, M., & Sommer, F. T. (2007). A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields. Journal of Computational Neuroscience, 22, 135-146.
-
(2007)
Journal of Computational Neuroscience
, vol.22
, pp. 135-146
-
-
Rhen, M.1
Sommer, F.T.2
-
36
-
-
51849128608
-
Sparse coding via thresholding and local competition in neural circuits
-
Rozell, C. J., Johnson,D.H., Baraniuk, R.G.,&Olshausen, B. A. (2010). Sparse coding via thresholding and local competition in neural circuits. Neural Computation, 20, 2526-2563.
-
(2010)
Neural Computation
, vol.20
, pp. 2526-2563
-
-
Rozell, C.J.1
Johnson, D.H.2
Baraniuk, R.G.3
Olshausen, B.A.4
-
37
-
-
52349092455
-
On sparse reconstruction from Fourier and gaussian measurements
-
Rudelson, M., & Vershynin, R. (2008). On sparse reconstruction from Fourier and gaussian measurements. Comms. Pure and Applied Math., 61, 1025-1045.
-
(2008)
Comms. Pure and Applied Math.
, vol.61
, pp. 1025-1045
-
-
Rudelson, M.1
Vershynin, R.2
-
38
-
-
84870987359
-
Low power sparse approximation on reconfigurable analog hardware
-
Shapero, S., Charles, A. S., Rozell, C., & Hasler, P. (2011). Low power sparse approximation on reconfigurable analog hardware. IEEE J. Emer. Sel. Top. in Circ. and Sys., 2, 530-541.
-
(2011)
IEEE J. Emer. Sel. Top. in Circ. and Sys.
, vol.2
, pp. 530-541
-
-
Shapero, S.1
Charles, A.S.2
Rozell, C.3
Hasler, P.4
-
39
-
-
84874212593
-
Design strategies for weight matrices of echo state networks
-
Strauss, T., Wustlich, W., & Labahn, R. (2012). Design strategies for weight matrices of echo state networks. Neural Computation, 24, 3246-3276.
-
(2012)
Neural Computation
, vol.24
, pp. 3246-3276
-
-
Strauss, T.1
Wustlich, W.2
Labahn, R.3
-
40
-
-
73849142717
-
Beyond Nyquist: Efficient sampling of sparse bandlimited signals
-
Tropp, J. A., Laska, J. N., Duarte, M. F., Romberg, J. K., & Baraniuk, R. G. (2009). Beyond Nyquist: Efficient sampling of sparse bandlimited signals. IEEE Trans. Inform. Theory, 56, 520-540.
-
(2009)
IEEE Trans. Inform. Theory
, vol.56
, pp. 520-540
-
-
Tropp, J.A.1
Laska, J.N.2
Duarte, M.F.3
Romberg, J.K.4
Baraniuk, R.G.5
-
41
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and Its Applications, 16, 264-280.
-
(1971)
Theory of Probability and Its Applications
, vol.16
, pp. 264-280
-
-
Vapnik, V.N.1
Chervonenkis, A.Y.2
-
42
-
-
84938533326
-
Introduction to the non-asymptotic analysis of random matrices
-
Y. Eldar & G. Kutyniok (Eds.) Cambridge: Cambridge University Press
-
Vershynin, R. (2012). Introduction to the non-asymptotic analysis of random matrices. In Y. Eldar & G. Kutyniok (Eds.) Compressed sensing, theory and applications (pp. 210-260). Cambridge: Cambridge University Press.
-
(2012)
Compressed sensing, theory and applications
, pp. 210-260
-
-
Vershynin, R.1
-
43
-
-
84877832983
-
Randomly connected networks have short temporal memory
-
Wallace, E., Hamid, R. M., & Latham, P. E. (2013). Randomly connected networks have short temporal memory. Neural Computation, 25, 1408-1439.
-
(2013)
Neural Computation
, vol.25
, pp. 1408-1439
-
-
Wallace, E.1
Hamid, R.M.2
Latham, P.E.3
-
44
-
-
2342592517
-
Short-termmemory in orthogonal neural networks
-
White, O. L., Lee, D. D.,&Sompolinsky, H. (2004). Short-termmemory in orthogonal neural networks. Physical Review Lett., 92, 148102.
-
(2004)
Physical Review Lett
, vol.92
, pp. 148102
-
-
White, O.L.1
Lee, D.D.2
Sompolinsky, H.3
-
45
-
-
84883386670
-
Visual nonclassical receptive field effects emerge from sparse coding in a dynamical system
-
Zhu, M., & Rozell, C. (2013). Visual nonclassical receptive field effects emerge from sparse coding in a dynamical system. PLoS Computational Biology, 9, e1003191.
-
(2013)
PLoS Computational Biology
, vol.9
-
-
Zhu, M.1
Rozell, C.2
|