메뉴 건너뛰기




Volumn 26, Issue 6, 2014, Pages 1198-1235

Short-term memory capacity in networks via the restricted isometry property

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; BRAIN CORTEX; HUMAN; NERVE CELL NETWORK; NONLINEAR SYSTEM; PHYSIOLOGY; SHORT TERM MEMORY;

EID: 84899857287     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00590     Document Type: Letter
Times cited : (26)

References (45)
  • 4
    • 0000235696 scopus 로고
    • Internal representations for associative memory
    • Baum, E. B., Moody, J., & Wilczek, F. (1988). Internal representations for associative memory. Biological Cybernetics, 92, 217-228.
    • (1988) Biological Cybernetics , vol.92 , pp. 217-228
    • Baum, E.B.1    Moody, J.2    Wilczek, F.3
  • 5
    • 84856004485 scopus 로고    scopus 로고
    • Templates for convex cone problemswith applications to sparse signal recovery
    • Becker, S., Candes, E. J.,&Grant,M. (2011). Templates for convex cone problemswith applications to sparse signal recovery. Mathematical Programming Computation, 3.
    • (2011) Mathematical Programming Computation , pp. 3
    • Becker, S.1    Candes, E.J.2    Grant, M.3
  • 6
    • 58549091090 scopus 로고    scopus 로고
    • State-dependent computations: Spatiotemporal processing in cortical networks
    • Buonomano, D. V., & Maass, W. (2009). State-dependent computations: Spatiotemporal processing in cortical networks. Nature Reviews Neuroscience, 10, 113-125.
    • (2009) Nature Reviews Neuroscience , vol.10 , pp. 113-125
    • Buonomano, D.V.1    Maass, W.2
  • 7
    • 77953355233 scopus 로고    scopus 로고
    • Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons
    • Büsing, L., Schrauwen, B., & Legenstein, R. (2010). Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural Computation, 22, 1272-1311.
    • (2010) Neural Computation , vol.22 , pp. 1272-1311
    • Büsing, L.1    Schrauwen, B.2    Legenstein, R.3
  • 8
    • 84878104490 scopus 로고    scopus 로고
    • Compressive sampling
    • Zurich: European Mathematical Society Publishing House
    • Candes, E. J. (2006). Compressive sampling. In Proc. Int. Congr.Mathematicians (vol. 3, pp. 1433-1452). Zurich: European Mathematical Society Publishing House.
    • (2006) Proc. Int. Congr.Mathematicians , vol.3 , pp. 1433-1452
    • Candes, E.J.1
  • 9
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • Candes, E. J., Romberg, J.,&Tao, T. (2006).Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52, 489-509.
    • (2006) IEEE Transactions on Information Theory , vol.52 , pp. 489-509
    • Candes, E.J.1    Romberg, J.2    Tao, T.3
  • 10
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery fromrandom projections: Universal encoding strategies?
    • Candes, E. J.,&Tao, T. (2006).Near-optimal signal recovery fromrandom projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52, 5406-5425.
    • (2006) IEEE Transactions on Information Theory , vol.52 , pp. 5406-5425
    • Candes, E.J.1    Tao, T.2
  • 16
    • 77952740831 scopus 로고    scopus 로고
    • On the role of sparse and redundant representations in image processing
    • Elad, M., Figueiredo, M., & Ma, Y. (2008). On the role of sparse and redundant representations in image processing. In Proceedings of the IEEE, 98, 972-982.
    • (2008) Proceedings of the IEEE , vol.98 , pp. 972-982
    • Elad, M.1    Figueiredo, M.2    Ma, Y.3
  • 18
    • 85162050505 scopus 로고    scopus 로고
    • Short-term memory in neuronal networks through dynamical compressed sensing
    • J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Red Hook, NY: Curran
    • Ganguli, S., & Sompolinsky, H. (2010). Short-term memory in neuronal networks through dynamical compressed sensing. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Neural information processing systems, 23. Red Hook, NY: Curran.
    • (2010) Neural information processing systems, 23
    • Ganguli, S.1    Sompolinsky, H.2
  • 19
    • 84862682946 scopus 로고    scopus 로고
    • Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis
    • Ganguli, S., & Sompolinsky, H. (2012). Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. Annual Review of Neuroscience, 35, 485-508.
    • (2012) Annual Review of Neuroscience , vol.35 , pp. 485-508
    • Ganguli, S.1    Sompolinsky, H.2
  • 20
    • 77956563404 scopus 로고    scopus 로고
    • Toeplitz compressed sensing matrices with applications to sparse channel estimation
    • Haupt, J., Bajwa, W. U., Raz, G., & Nowak, R. (2010). Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Transactions on Information Theory, 56, 5862-5875.
    • (2010) IEEE Transactions on Information Theory , vol.56 , pp. 5862-5875
    • Haupt, J.1    Bajwa, W.U.2    Raz, G.3    Nowak, R.4
  • 21
    • 76849110605 scopus 로고    scopus 로고
    • Memory in linear recurrent neural networks in continuous time
    • Hermans, M., & Schrauwen, B. (2010). Memory in linear recurrent neural networks in continuous time. Neural Networks, 23, 341-355.
    • (2010) Neural Networks , vol.23 , pp. 341-355
    • Hermans, M.1    Schrauwen, B.2
  • 22
    • 84874201093 scopus 로고    scopus 로고
    • A network of spiking neurons for computing sparse representations in an energy-efficient way
    • Hu, T., Genkin, A., & Chklovskii, D. B. (2012). A network of spiking neurons for computing sparse representations in an energy-efficient way. Neural Computation, 24, 2852-2872.
    • (2012) Neural Computation , vol.24 , pp. 2852-2872
    • Hu, T.1    Genkin, A.2    Chklovskii, D.B.3
  • 23
    • 85161987501 scopus 로고    scopus 로고
    • Deciphering subsampled data: Adaptive compressive sampling as a principle of brain communication
    • J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Red Hook, NY: Curran
    • Isley, G., Hillar, C. J.,&Sommer, F. T. (2011).Deciphering subsampled data: Adaptive compressive sampling as a principle of brain communication. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Advances in neural information processing systems, 23. Red Hook, NY: Curran.
    • (2011) Advances in neural information processing systems , vol.23
    • Isley, G.1    Hillar, C.J.2    Sommer, F.T.3
  • 24
    • 1842488370 scopus 로고    scopus 로고
    • (GMD Report 152). St. Augustin: German National Research Center for Information Technology
    • Jaeger, H. (2001). Short term memory in echo state networks (GMD Report 152). St. Augustin: German National Research Center for Information Technology.
    • (2001) Short term memory in echo state networks
    • Jaeger, H.1
  • 25
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    • Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304, 78-80.
    • (2004) Science , vol.304 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 28
    • 33846543881 scopus 로고    scopus 로고
    • Edge of chaos and prediction of computational performance for neural circuit models
    • Legenstein, R., & Maass, W. (2007). Edge of chaos and prediction of computational performance for neural circuit models. Neural Networks, 20, 323- 334.
    • (2007) Neural Networks , vol.20 , pp. 323-334
    • Legenstein, R.1    Maass, W.2
  • 29
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: A new framework for neural computation based on perturbations
    • Maass, W., Natschl̈ager, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14, 2531-2560.
    • (2002) Neural Computation , vol.14 , pp. 2531-2560
    • Maass, W.1    Natschl̈ager, T.2    Markram, H.3
  • 30
    • 28844437452 scopus 로고    scopus 로고
    • Signal buffering in random networks of spiking neurons: Microscopic versus macroscopic phenomena
    • Mayor, J.,&Gerstner,W. (2005). Signal buffering in random networks of spiking neurons: Microscopic versus macroscopic phenomena. Physical Review E, 72, 051906.
    • (2005) Physical Review E , vol.72 , pp. 051906
    • Mayor, J.1    Gerstner, W.2
  • 31
    • 40849102598 scopus 로고    scopus 로고
    • Synaptic theory of working memory
    • Mongillo, G., Barak, O., & Tsodyks, M. (2008). Synaptic theory of working memory. Science, 319, 1543-1546.
    • (2008) Science , vol.319 , pp. 1543-1546
    • Mongillo, G.1    Barak, O.2    Tsodyks, M.3
  • 32
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B. A., & Field, D. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.2
  • 33
    • 81455136681 scopus 로고    scopus 로고
    • Concentration of measure for block diagonal matrices with applications to compressive signal processing
    • Park, J. Y., Yap, H. L., Rozell, C. J., & Wakin, M. B. (2011). Concentration of measure for block diagonal matrices with applications to compressive signal processing. IEEE Transactions on Signal Processing, 59, 5859-5875.
    • (2011) IEEE Transactions on Signal Processing , vol.59 , pp. 5859-5875
    • Park, J.Y.1    Yap, H.L.2    Rozell, C.J.3    Wakin, M.B.4
  • 35
    • 33847100046 scopus 로고    scopus 로고
    • A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields
    • Rhen, M., & Sommer, F. T. (2007). A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields. Journal of Computational Neuroscience, 22, 135-146.
    • (2007) Journal of Computational Neuroscience , vol.22 , pp. 135-146
    • Rhen, M.1    Sommer, F.T.2
  • 36
    • 51849128608 scopus 로고    scopus 로고
    • Sparse coding via thresholding and local competition in neural circuits
    • Rozell, C. J., Johnson,D.H., Baraniuk, R.G.,&Olshausen, B. A. (2010). Sparse coding via thresholding and local competition in neural circuits. Neural Computation, 20, 2526-2563.
    • (2010) Neural Computation , vol.20 , pp. 2526-2563
    • Rozell, C.J.1    Johnson, D.H.2    Baraniuk, R.G.3    Olshausen, B.A.4
  • 37
    • 52349092455 scopus 로고    scopus 로고
    • On sparse reconstruction from Fourier and gaussian measurements
    • Rudelson, M., & Vershynin, R. (2008). On sparse reconstruction from Fourier and gaussian measurements. Comms. Pure and Applied Math., 61, 1025-1045.
    • (2008) Comms. Pure and Applied Math. , vol.61 , pp. 1025-1045
    • Rudelson, M.1    Vershynin, R.2
  • 39
    • 84874212593 scopus 로고    scopus 로고
    • Design strategies for weight matrices of echo state networks
    • Strauss, T., Wustlich, W., & Labahn, R. (2012). Design strategies for weight matrices of echo state networks. Neural Computation, 24, 3246-3276.
    • (2012) Neural Computation , vol.24 , pp. 3246-3276
    • Strauss, T.1    Wustlich, W.2    Labahn, R.3
  • 41
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and Its Applications, 16, 264-280.
    • (1971) Theory of Probability and Its Applications , vol.16 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 42
    • 84938533326 scopus 로고    scopus 로고
    • Introduction to the non-asymptotic analysis of random matrices
    • Y. Eldar & G. Kutyniok (Eds.) Cambridge: Cambridge University Press
    • Vershynin, R. (2012). Introduction to the non-asymptotic analysis of random matrices. In Y. Eldar & G. Kutyniok (Eds.) Compressed sensing, theory and applications (pp. 210-260). Cambridge: Cambridge University Press.
    • (2012) Compressed sensing, theory and applications , pp. 210-260
    • Vershynin, R.1
  • 43
    • 84877832983 scopus 로고    scopus 로고
    • Randomly connected networks have short temporal memory
    • Wallace, E., Hamid, R. M., & Latham, P. E. (2013). Randomly connected networks have short temporal memory. Neural Computation, 25, 1408-1439.
    • (2013) Neural Computation , vol.25 , pp. 1408-1439
    • Wallace, E.1    Hamid, R.M.2    Latham, P.E.3
  • 44
  • 45
    • 84883386670 scopus 로고    scopus 로고
    • Visual nonclassical receptive field effects emerge from sparse coding in a dynamical system
    • Zhu, M., & Rozell, C. (2013). Visual nonclassical receptive field effects emerge from sparse coding in a dynamical system. PLoS Computational Biology, 9, e1003191.
    • (2013) PLoS Computational Biology , vol.9
    • Zhu, M.1    Rozell, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.