메뉴 건너뛰기




Volumn 22, Issue 5, 2010, Pages 1272-1311

Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ANIMAL; ARTICLE; ARTIFICIAL NEURAL NETWORK; COMPUTER SIMULATION; MEMORY; NERVE CELL; TIME;

EID: 77953355233     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2009.01-09-947     Document Type: Article
Times cited : (151)

References (48)
  • 2
    • 0348010295 scopus 로고    scopus 로고
    • Neuronal avalanches in neocortical circuits
    • Beggs, J.M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of Neuroscience, 23(35), 11167-11177.
    • (2003) Journal of Neuroscience , vol.23 , Issue.35 , pp. 11167-11177
    • Beggs, J.M.1    Plenz, D.2
  • 3
    • 2942552269 scopus 로고    scopus 로고
    • Real-time computation at the edge of chaos in recurrent neural networks
    • Bertschinger, N., &Natschl̈ager, T. (2004). Real-time computation at the edge of chaos in recurrent neural networks. Neural Computation, 16(7), 1413-1436.
    • (2004) Neural Computation , vol.16 , Issue.7 , pp. 1413-1436
    • Bertschinger, N.1    Natschläger, T.2
  • 4
    • 0026670389 scopus 로고
    • The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs
    • DeFelipe, J., & Fariñnas, I. (1992). The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol., 39(6), 563-607.
    • (1992) Prog. Neurobiol. , vol.39 , Issue.6 , pp. 563-607
    • DeFelipe, J.1    Fariñas, I.2
  • 5
    • 84956252965 scopus 로고
    • Random networks of automata: A simple annealed approximation
    • Derrida, B., & Pomeau, Y. (1986). Random networks of automata: A simple annealed approximation. Europhysics Letters, 1(2), 45-49.
    • (1986) Europhysics Letters , vol.1 , Issue.2 , pp. 45-49
    • Derrida, B.1    Pomeau, Y.2
  • 6
    • 84956278072 scopus 로고
    • Phase transitions in two-dimensional Kauffman cellular automata
    • Derrida, B., & Stauffer, D. (1986). Phase transitions in two-dimensional Kauffman cellular automata. Europhys. Lett., 2, 739-745.
    • (1986) Europhys. Lett. , vol.2 , pp. 739-745
    • Derrida, B.1    Stauffer, D.2
  • 7
    • 0141499222 scopus 로고    scopus 로고
    • The high-conductance state of neocortical neurons in vivo
    • Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci., 4(9), 739-751.
    • (2003) Nat. Rev. Neurosci. , vol.4 , Issue.9 , pp. 739-751
    • Destexhe, A.1    Rudolph, M.2    Paré, D.3
  • 8
    • 57749113625 scopus 로고    scopus 로고
    • Memory traces in dynamical systems
    • Ganguli, S., Huh, D., &Sompolinsky, H. (2008).Memory traces in dynamical systems. PNAS, 15(48), 18970-18975.
    • (2008) PNAS , vol.15 , Issue.48 , pp. 18970-18975
    • Ganguli, S.1    Huh, D.2    Sompolinsky, H.3
  • 9
    • 33845781025 scopus 로고    scopus 로고
    • A statistical analysis of information processing properties of lamina-specific cortical microcircuit models
    • Häusler, S., & Maass, W. (2007). A statistical analysis of information processing properties of lamina-specific cortical microcircuit models. Cerebral Cortex, 17(1), 149-162.
    • (2007) Cerebral Cortex , vol.17 , Issue.1 , pp. 149-162
    • Häusler, S.1    Maass, W.2
  • 11
    • 1842488370 scopus 로고    scopus 로고
    • (GMD Rep. 152). St. Augustin: German National Research Center for Information Technology
    • Jaeger, H. (2002). Short term memory in echo state networks (GMD Rep. 152). St. Augustin: German National Research Center for Information Technology.
    • (2002) Short term memory in echo state networks
    • Jaeger, H.1
  • 12
    • 58049158689 scopus 로고    scopus 로고
    • Echo state networks
    • Jaeger, H. (2007). Echo state networks. Scholarpedia, 2(9), 2330.
    • (2007) Scholarpedia , vol.2 , Issue.9 , pp. 2330
    • Jaeger, H.1
  • 13
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    • Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304, 78-80.
    • (2004) Science , vol.304 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 14
    • 34249938474 scopus 로고    scopus 로고
    • Optimization and applications of echo state networks with leaky-integrator neurons
    • Jaeger, H., Lukoševičius, M., Popovici, D., &Siewert, U. (2007).Optimization and applications of echo state networks with leaky-integrator neurons. Neural Networks, 20(3), 335-352.
    • (2007) Neural Networks , vol.20 , Issue.3 , pp. 335-352
    • Jaeger, H.1    Lukoševičius, M.2    Popovici, D.3    Siewert, U.4
  • 15
    • 20744444594 scopus 로고    scopus 로고
    • Movement generation with circuits of spiking neurons
    • Joshi, P., & Maass, W. (2005).Movement generation with circuits of spiking neurons. Neural Computation, 17(8), 1715-1738.
    • (2005) Neural Computation , vol.17 , Issue.8 , pp. 1715-1738
    • Joshi, P.1    Maass, W.2
  • 18
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly connected nets
    • Kauffman, S.A. (1969). Metabolic stability and epigenesis in randomly connected nets. J. Theoret. Biol., 22, 437-467.
    • (1969) J. Theoret. Biol. , vol.22 , pp. 437-467
    • Kauffman, S.A.1
  • 19
    • 45149138762 scopus 로고
    • Computation at the edge of chaos
    • Langton, C.G. (1990). Computation at the edge of chaos. Physica D, 42, 12-37.
    • (1990) Physica D , vol.42 , pp. 12-37
    • Langton, C.G.1
  • 21
    • 34249775479 scopus 로고    scopus 로고
    • Fading memory and time series prediction in recurrent networks with different forms of plasticity
    • Lazar, A., Pippa, G., & Triesch, J. (2007). Fading memory and time series prediction in recurrent networks with different forms of plasticity. Neural Networks, 20, 312-322.
    • (2007) Neural Networks , vol.20 , pp. 312-322
    • Lazar, A.1    Pippa, G.2    Triesch, J.3
  • 22
    • 33846543881 scopus 로고    scopus 로고
    • Edge of chaos and prediction of computational performance for neural microcircuit models
    • Legenstein, R., & Maass, W. (2007a). Edge of chaos and prediction of computational performance for neural microcircuit models. Neural Networks, 20, 323-334.
    • (2007) Neural Networks , vol.20 , pp. 323-334
    • Legenstein, R.1    Maass, W.2
  • 23
    • 33847177741 scopus 로고    scopus 로고
    • What makes a dynamical system computationally powerful?
    • S. Haykin, J.C. Principe, T. Sejnowski, & J. McWhirter (Eds.). (pp. 127-154). Cambridge, MA: MIT Press
    • Legenstein, R., & Maass, W. (2007b). What makes a dynamical system computationally powerful? In S. Haykin, J.C. Principe, T. Sejnowski, & J. McWhirter (Eds.), New directions in statistical signal processing: From systems to brain (pp. 127-154). Cambridge, MA: MIT Press.
    • (2007) New directions in statistical signal processing: From systems to brain
    • Legenstein, R.1    Maass, W.2
  • 24
    • 0041330089 scopus 로고    scopus 로고
    • Input prediction and autonomous movement analysis in recurrent circuits of spiking neurons
    • Legenstein, R., Markram, H., &Maass, W. (2003). Input prediction and autonomous movement analysis in recurrent circuits of spiking neurons. Reviews in the Neurosciences, 14(1-2), 5-19.
    • (2003) Reviews in the Neurosciences , vol.14 , Issue.1-2 , pp. 5-19
    • Legenstein, R.1    Markram, H.2    Maass, W.3
  • 25
    • 0037452922 scopus 로고    scopus 로고
    • The cost of cortical computation
    • Lennie, P. (2003). The cost of cortical computation. Current Biology, 13, 493-497.
    • (2003) Current Biology , vol.13 , pp. 493-497
    • Lennie, P.1
  • 26
    • 0030115492 scopus 로고    scopus 로고
    • Energy efficient neural codes
    • Levy, W.B., & Baxter, R.A. (1996). Energy efficient neural codes. Neural Computation, 8(3), 531-543.
    • (1996) Neural Computation , vol.8 , Issue.3 , pp. 531-543
    • Levy, W.B.1    Baxter, R.A.2
  • 28
    • 0034273128 scopus 로고    scopus 로고
    • Lyapunov exponents in random Boolean networks
    • Luque, B., & Sol'e, R. V. (2000). Lyapunov exponents in random Boolean networks. Physica A, 284, 33-45.
    • (2000) Physica A , vol.284 , pp. 33-45
    • Luque, B.1    Sol'e, R.V.2
  • 29
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: A new framework for neural computation based on perturbations
    • Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14(11), 2531-2560.
    • (2002) Neural Computation , vol.14 , Issue.11 , pp. 2531-2560
    • Maass, W.1    Natschl̈ager, T.2    Markram, H.3
  • 30
    • 28844437452 scopus 로고    scopus 로고
    • Signal buffering in random networks of spiking neurons: Microscopic versus macroscopic phenomena
    • Mayor, J., &Gerstner, W. (2005). Signal buffering in random networks of spiking neurons: Microscopic versus macroscopic phenomena. Physical Review E, 72, 051906.
    • (2005) Physical Review E , vol.72 , pp. 051906
    • Mayor, J.1    Gerstner, W.2
  • 31
    • 0002082980 scopus 로고
    • Revisiting the edge of chaos: Evolving cellular automata to perform computations
    • Mitchell, M., Hraber, P.T., & Crutchfield, J.P. (1993). Revisiting the edge of chaos: Evolving cellular automata to perform computations. Complex Systems, 7, 89-130.
    • (1993) Complex Systems , vol.7 , pp. 89-130
    • Mitchell, M.1    Hraber, P.T.2    Crutchfield, J.P.3
  • 32
    • 84898977685 scopus 로고    scopus 로고
    • At the edge of chaos: Realtime computations and self-organized criticality in recurrent neural networks
    • L. K. Saul, Y. Weiss, & L. Bottou (Eds.). Cambridge, MA: MIT Press
    • Natschl̈ager, T., Bertschinger, N., & Legenstein, R. (2005). At the edge of chaos: Realtime computations and self-organized criticality in recurrent neural networks. In L.K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, 17 (pp. 145-152). Cambridge, MA: MIT Press.
    • (2005) Advances in neural information processing systems , vol.17 , pp. 145-152
    • Natschl̈ager, T.1    Bertschinger, N.2    Legenstein, R.3
  • 33
    • 0001823266 scopus 로고
    • Adaption towards the edge of chaos
    • A. S. Kelso, A.J. Mandell, & M. F. Shlesinger (Eds. ). Singapore:World Scientific
    • Packard, N. (1988). Adaption towards the edge of chaos. In J.A.S. Kelso, A.J. Mandell, & M.F. Shlesinger (Eds.), Dynamic patterns in complex systems (pp. 293-301). Singapore:World Scientific.
    • (1988) Dynamic patterns in complex systems , pp. 293-301
    • Packard, N.1
  • 35
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • Shmulevich, I., Dougherty, E., Kim, S., & Zhang, W. (2002). Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2), 261-274.
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.2    Kim, S.3    Zhang, W.4
  • 37
    • 34249811184 scopus 로고    scopus 로고
    • Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning
    • Steil, J.J. (2007). Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning. Neural Networks, 20(3), 353-364.
    • (2007) Neural Networks , vol.20 , Issue.3 , pp. 353-364
    • Steil, J.J.1
  • 38
    • 34247243264 scopus 로고    scopus 로고
    • Synergies between intrinsic and synaptic plasticity mechanisms
    • Triesch, J. (2007). Synergies between intrinsic and synaptic plasticity mechanisms. Neural Compuatation, 19(4), 885-909.
    • (2007) Neural Compuatation , vol.19 , Issue.4 , pp. 885-909
    • Triesch, J.1
  • 39
    • 0031018015 scopus 로고    scopus 로고
    • The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability
    • Tsodyks, M., &Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Nat. Acad. Sci. USA, 94, 719-723.
    • (1997) Proc. Nat. Acad. Sci. USA , vol.94 , pp. 719-723
    • Tsodyks, M.1    Markram, H.2
  • 46
    • 2342592517 scopus 로고    scopus 로고
    • Short-termmemory in orthogonal neural networks
    • White, O.L., Lee, D.D., &Sompolinsky, H. (2004). Short-termmemory in orthogonal neural networks. Phys. Rev. Letters, 92(14), 148102.
    • (2004) Phys. Rev. Letters , vol.92 , Issue.14 , pp. 148102
    • White, O.L.1    Lee, D.D.2    Sompolinsky, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.