-
2
-
-
0348010295
-
Neuronal avalanches in neocortical circuits
-
Beggs, J.M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of Neuroscience, 23(35), 11167-11177.
-
(2003)
Journal of Neuroscience
, vol.23
, Issue.35
, pp. 11167-11177
-
-
Beggs, J.M.1
Plenz, D.2
-
3
-
-
2942552269
-
Real-time computation at the edge of chaos in recurrent neural networks
-
Bertschinger, N., &Natschl̈ager, T. (2004). Real-time computation at the edge of chaos in recurrent neural networks. Neural Computation, 16(7), 1413-1436.
-
(2004)
Neural Computation
, vol.16
, Issue.7
, pp. 1413-1436
-
-
Bertschinger, N.1
Natschläger, T.2
-
4
-
-
0026670389
-
The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs
-
DeFelipe, J., & Fariñnas, I. (1992). The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol., 39(6), 563-607.
-
(1992)
Prog. Neurobiol.
, vol.39
, Issue.6
, pp. 563-607
-
-
DeFelipe, J.1
Fariñas, I.2
-
5
-
-
84956252965
-
Random networks of automata: A simple annealed approximation
-
Derrida, B., & Pomeau, Y. (1986). Random networks of automata: A simple annealed approximation. Europhysics Letters, 1(2), 45-49.
-
(1986)
Europhysics Letters
, vol.1
, Issue.2
, pp. 45-49
-
-
Derrida, B.1
Pomeau, Y.2
-
6
-
-
84956278072
-
Phase transitions in two-dimensional Kauffman cellular automata
-
Derrida, B., & Stauffer, D. (1986). Phase transitions in two-dimensional Kauffman cellular automata. Europhys. Lett., 2, 739-745.
-
(1986)
Europhys. Lett.
, vol.2
, pp. 739-745
-
-
Derrida, B.1
Stauffer, D.2
-
7
-
-
0141499222
-
The high-conductance state of neocortical neurons in vivo
-
Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci., 4(9), 739-751.
-
(2003)
Nat. Rev. Neurosci.
, vol.4
, Issue.9
, pp. 739-751
-
-
Destexhe, A.1
Rudolph, M.2
Paré, D.3
-
8
-
-
57749113625
-
Memory traces in dynamical systems
-
Ganguli, S., Huh, D., &Sompolinsky, H. (2008).Memory traces in dynamical systems. PNAS, 15(48), 18970-18975.
-
(2008)
PNAS
, vol.15
, Issue.48
, pp. 18970-18975
-
-
Ganguli, S.1
Huh, D.2
Sompolinsky, H.3
-
9
-
-
33845781025
-
A statistical analysis of information processing properties of lamina-specific cortical microcircuit models
-
Häusler, S., & Maass, W. (2007). A statistical analysis of information processing properties of lamina-specific cortical microcircuit models. Cerebral Cortex, 17(1), 149-162.
-
(2007)
Cerebral Cortex
, vol.17
, Issue.1
, pp. 149-162
-
-
Häusler, S.1
Maass, W.2
-
11
-
-
1842488370
-
-
(GMD Rep. 152). St. Augustin: German National Research Center for Information Technology
-
Jaeger, H. (2002). Short term memory in echo state networks (GMD Rep. 152). St. Augustin: German National Research Center for Information Technology.
-
(2002)
Short term memory in echo state networks
-
-
Jaeger, H.1
-
12
-
-
58049158689
-
Echo state networks
-
Jaeger, H. (2007). Echo state networks. Scholarpedia, 2(9), 2330.
-
(2007)
Scholarpedia
, vol.2
, Issue.9
, pp. 2330
-
-
Jaeger, H.1
-
13
-
-
1842421269
-
Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
-
Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304, 78-80.
-
(2004)
Science
, vol.304
, pp. 78-80
-
-
Jaeger, H.1
Haas, H.2
-
14
-
-
34249938474
-
Optimization and applications of echo state networks with leaky-integrator neurons
-
Jaeger, H., Lukoševičius, M., Popovici, D., &Siewert, U. (2007).Optimization and applications of echo state networks with leaky-integrator neurons. Neural Networks, 20(3), 335-352.
-
(2007)
Neural Networks
, vol.20
, Issue.3
, pp. 335-352
-
-
Jaeger, H.1
Lukoševičius, M.2
Popovici, D.3
Siewert, U.4
-
15
-
-
20744444594
-
Movement generation with circuits of spiking neurons
-
Joshi, P., & Maass, W. (2005).Movement generation with circuits of spiking neurons. Neural Computation, 17(8), 1715-1738.
-
(2005)
Neural Computation
, vol.17
, Issue.8
, pp. 1715-1738
-
-
Joshi, P.1
Maass, W.2
-
18
-
-
0014489272
-
Metabolic stability and epigenesis in randomly connected nets
-
Kauffman, S.A. (1969). Metabolic stability and epigenesis in randomly connected nets. J. Theoret. Biol., 22, 437-467.
-
(1969)
J. Theoret. Biol.
, vol.22
, pp. 437-467
-
-
Kauffman, S.A.1
-
19
-
-
45149138762
-
Computation at the edge of chaos
-
Langton, C.G. (1990). Computation at the edge of chaos. Physica D, 42, 12-37.
-
(1990)
Physica D
, vol.42
, pp. 12-37
-
-
Langton, C.G.1
-
20
-
-
0032057360
-
The metabolic cost of neural information
-
Laughlin, S., de Ruyter van Steveninck, R., & Anderson, J. (1998). The metabolic cost of neural information. Nature Neuroscience, 1, 36-41.
-
(1998)
Nature Neuroscience
, vol.1
, pp. 36-41
-
-
Laughlin, S.1
de Ruyter van Steveninck, R.2
Anderson, J.3
-
21
-
-
34249775479
-
Fading memory and time series prediction in recurrent networks with different forms of plasticity
-
Lazar, A., Pippa, G., & Triesch, J. (2007). Fading memory and time series prediction in recurrent networks with different forms of plasticity. Neural Networks, 20, 312-322.
-
(2007)
Neural Networks
, vol.20
, pp. 312-322
-
-
Lazar, A.1
Pippa, G.2
Triesch, J.3
-
22
-
-
33846543881
-
Edge of chaos and prediction of computational performance for neural microcircuit models
-
Legenstein, R., & Maass, W. (2007a). Edge of chaos and prediction of computational performance for neural microcircuit models. Neural Networks, 20, 323-334.
-
(2007)
Neural Networks
, vol.20
, pp. 323-334
-
-
Legenstein, R.1
Maass, W.2
-
23
-
-
33847177741
-
What makes a dynamical system computationally powerful?
-
S. Haykin, J.C. Principe, T. Sejnowski, & J. McWhirter (Eds.). (pp. 127-154). Cambridge, MA: MIT Press
-
Legenstein, R., & Maass, W. (2007b). What makes a dynamical system computationally powerful? In S. Haykin, J.C. Principe, T. Sejnowski, & J. McWhirter (Eds.), New directions in statistical signal processing: From systems to brain (pp. 127-154). Cambridge, MA: MIT Press.
-
(2007)
New directions in statistical signal processing: From systems to brain
-
-
Legenstein, R.1
Maass, W.2
-
24
-
-
0041330089
-
Input prediction and autonomous movement analysis in recurrent circuits of spiking neurons
-
Legenstein, R., Markram, H., &Maass, W. (2003). Input prediction and autonomous movement analysis in recurrent circuits of spiking neurons. Reviews in the Neurosciences, 14(1-2), 5-19.
-
(2003)
Reviews in the Neurosciences
, vol.14
, Issue.1-2
, pp. 5-19
-
-
Legenstein, R.1
Markram, H.2
Maass, W.3
-
25
-
-
0037452922
-
The cost of cortical computation
-
Lennie, P. (2003). The cost of cortical computation. Current Biology, 13, 493-497.
-
(2003)
Current Biology
, vol.13
, pp. 493-497
-
-
Lennie, P.1
-
26
-
-
0030115492
-
Energy efficient neural codes
-
Levy, W.B., & Baxter, R.A. (1996). Energy efficient neural codes. Neural Computation, 8(3), 531-543.
-
(1996)
Neural Computation
, vol.8
, Issue.3
, pp. 531-543
-
-
Levy, W.B.1
Baxter, R.A.2
-
28
-
-
0034273128
-
Lyapunov exponents in random Boolean networks
-
Luque, B., & Sol'e, R. V. (2000). Lyapunov exponents in random Boolean networks. Physica A, 284, 33-45.
-
(2000)
Physica A
, vol.284
, pp. 33-45
-
-
Luque, B.1
Sol'e, R.V.2
-
29
-
-
0036834701
-
Real-time computing without stable states: A new framework for neural computation based on perturbations
-
Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14(11), 2531-2560.
-
(2002)
Neural Computation
, vol.14
, Issue.11
, pp. 2531-2560
-
-
Maass, W.1
Natschl̈ager, T.2
Markram, H.3
-
30
-
-
28844437452
-
Signal buffering in random networks of spiking neurons: Microscopic versus macroscopic phenomena
-
Mayor, J., &Gerstner, W. (2005). Signal buffering in random networks of spiking neurons: Microscopic versus macroscopic phenomena. Physical Review E, 72, 051906.
-
(2005)
Physical Review E
, vol.72
, pp. 051906
-
-
Mayor, J.1
Gerstner, W.2
-
31
-
-
0002082980
-
Revisiting the edge of chaos: Evolving cellular automata to perform computations
-
Mitchell, M., Hraber, P.T., & Crutchfield, J.P. (1993). Revisiting the edge of chaos: Evolving cellular automata to perform computations. Complex Systems, 7, 89-130.
-
(1993)
Complex Systems
, vol.7
, pp. 89-130
-
-
Mitchell, M.1
Hraber, P.T.2
Crutchfield, J.P.3
-
32
-
-
84898977685
-
At the edge of chaos: Realtime computations and self-organized criticality in recurrent neural networks
-
L. K. Saul, Y. Weiss, & L. Bottou (Eds.). Cambridge, MA: MIT Press
-
Natschl̈ager, T., Bertschinger, N., & Legenstein, R. (2005). At the edge of chaos: Realtime computations and self-organized criticality in recurrent neural networks. In L.K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, 17 (pp. 145-152). Cambridge, MA: MIT Press.
-
(2005)
Advances in neural information processing systems
, vol.17
, pp. 145-152
-
-
Natschl̈ager, T.1
Bertschinger, N.2
Legenstein, R.3
-
33
-
-
0001823266
-
Adaption towards the edge of chaos
-
A. S. Kelso, A.J. Mandell, & M. F. Shlesinger (Eds. ). Singapore:World Scientific
-
Packard, N. (1988). Adaption towards the edge of chaos. In J.A.S. Kelso, A.J. Mandell, & M.F. Shlesinger (Eds.), Dynamic patterns in complex systems (pp. 293-301). Singapore:World Scientific.
-
(1988)
Dynamic patterns in complex systems
, pp. 293-301
-
-
Packard, N.1
-
34
-
-
40649085253
-
Improving reservoirs using intrinsic plasticity
-
Schrauwen, B., Wardermann, M., Verstraeten, D., Steil, J.J., & Stroobandt, D. (2008). Improving reservoirs using intrinsic plasticity. Neurocomputing, 71, 1159-1171.
-
(2008)
Neurocomputing
, vol.71
, pp. 1159-1171
-
-
Schrauwen, B.1
Wardermann, M.2
Verstraeten, D.3
Steil, J.J.4
Stroobandt, D.5
-
35
-
-
0036184629
-
Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
-
Shmulevich, I., Dougherty, E., Kim, S., & Zhang, W. (2002). Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2), 261-274.
-
(2002)
Bioinformatics
, vol.18
, Issue.2
, pp. 261-274
-
-
Shmulevich, I.1
Dougherty, E.2
Kim, S.3
Zhang, W.4
-
37
-
-
34249811184
-
Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning
-
Steil, J.J. (2007). Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning. Neural Networks, 20(3), 353-364.
-
(2007)
Neural Networks
, vol.20
, Issue.3
, pp. 353-364
-
-
Steil, J.J.1
-
38
-
-
34247243264
-
Synergies between intrinsic and synaptic plasticity mechanisms
-
Triesch, J. (2007). Synergies between intrinsic and synaptic plasticity mechanisms. Neural Compuatation, 19(4), 885-909.
-
(2007)
Neural Compuatation
, vol.19
, Issue.4
, pp. 885-909
-
-
Triesch, J.1
-
39
-
-
0031018015
-
The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability
-
Tsodyks, M., &Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Nat. Acad. Sci. USA, 94, 719-723.
-
(1997)
Proc. Nat. Acad. Sci. USA
, vol.94
, pp. 719-723
-
-
Tsodyks, M.1
Markram, H.2
-
40
-
-
47849114096
-
Toward optical signal processing using photonic reservoir computing
-
Vandoorne, K., Dierckx, W., Schrauwen, B., Verstraeten, D., Baets, R., Bienstman, P., et al. (2008). Toward optical signal processing using photonic reservoir computing. Optics Express, 16(15), 11182-11192.
-
(2008)
Optics Express
, vol.16
, Issue.15
, pp. 11182-11192
-
-
Vandoorne, K.1
Dierckx, W.2
Schrauwen, B.3
Verstraeten, D.4
Baets, R.5
Bienstman, P.6
-
42
-
-
34249815487
-
A unifying comparison of reservoir computing methods
-
Verstraeten, D., Schrauwen, B., D'Haene, M., & Stroobandt, D. (2007). A unifying comparison of reservoir computing methods. Neural Networks, 20, 391-403.
-
(2007)
Neural Networks
, vol.20
, pp. 391-403
-
-
Verstraeten, D.1
Schrauwen, B.2
D'Haene, M.3
Stroobandt, D.4
-
43
-
-
23844557176
-
Isolated word recognition with the liquid state machine: A case study
-
Verstraeten, D., Schrauwen, B., Stroobandt, D., & Campenhout, J.V. (2005). Isolated word recognition with the liquid state machine: A case study. Information Processing Letters, 95(6), 521-528.
-
(2005)
Information Processing Letters
, vol.95
, Issue.6
, pp. 521-528
-
-
Verstraeten, D.1
Schrauwen, B.2
Stroobandt, D.3
Campenhout, J.V.4
-
44
-
-
70350598181
-
Pattern classification with cnns as reservoirs
-
(NOLTA). Tokyo: Institute of Electronics, Information and Communication Engineers
-
Verstraeten, D., Xavier-de Souza, S., Schrauwen, B., Suykens, J., Stroobandt, D., & Vandewalle, J. (2008). Pattern classification with cnns as reservoirs. In Proceedings of the International Symposium on Nonlinear Theory and Its Applications (NOLTA). Tokyo: Institute of Electronics, Information and Communication Engineers.
-
(2008)
Proceedings of the International Symposium on Nonlinear Theory and Its Applications
-
-
Verstraeten, D.1
Xavier-de Souza, S.2
Schrauwen, B.3
Suykens, J.4
Stroobandt, D.5
Vandewalle, J.6
-
45
-
-
23344446786
-
Neural networks dynamics
-
Vogels, T.P., Rajan, K., & Abbott, L. (2005). Neural networks dynamics. Annual Review of Neuroscience, 28, 357-376.
-
(2005)
Annual Review of Neuroscience
, vol.28
, pp. 357-376
-
-
Vogels, T.P.1
Rajan, K.2
Abbott, L.3
-
46
-
-
2342592517
-
Short-termmemory in orthogonal neural networks
-
White, O.L., Lee, D.D., &Sompolinsky, H. (2004). Short-termmemory in orthogonal neural networks. Phys. Rev. Letters, 92(14), 148102.
-
(2004)
Phys. Rev. Letters
, vol.92
, Issue.14
, pp. 148102
-
-
White, O.L.1
Lee, D.D.2
Sompolinsky, H.3
|