메뉴 건너뛰기




Volumn 25, Issue 6, 2013, Pages 1408-1439

Randomly connected networks have short temporal memory

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; BRAIN; CYTOLOGY; HUMAN; LONG TERM MEMORY; NERVE CELL; NERVE CELL NETWORK; NONLINEAR SYSTEM; PHYSIOLOGY; PROBABILITY; SHORT TERM MEMORY; STATISTICAL MODEL; TIME;

EID: 84877832983     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00449     Document Type: Article
Times cited : (31)

References (30)
  • 1
    • 6144229366 scopus 로고    scopus 로고
    • From attractor to chaotic saddle: A tale of transverse instability
    • Ashwin, P., Buescu, J., & Stewart, I. (1996). From attractor to chaotic saddle: A tale of transverse instability. Nonlinearity, 9, 703-737.
    • (1996) Nonlinearity , vol.9 , pp. 703-737
    • Ashwin, P.1    Buescu, J.2    Stewart, I.3
  • 2
    • 33646340670 scopus 로고    scopus 로고
    • On the sensitive dependence on initial conditions of the dynamics of networks of spiking neurons
    • Banerjee, A. (2006).On the sensitive dependence on initial conditions of the dynamics of networks of spiking neurons. J. Comput. Neurosci., 20, 321-348.
    • (2006) J. Comput. Neurosci. , vol.20 , pp. 321-348
    • Banerjee, A.1
  • 3
    • 2942552269 scopus 로고    scopus 로고
    • Real-time computation at the edge of chaos in recurrent neural networks
    • Bertschinger, N., & Natschläger, T. (2004). Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput., 16, 1413-1436.
    • (2004) Neural Comput. , vol.16 , pp. 1413-1436
    • Bertschinger, N.1    Natschläger, T.2
  • 4
    • 77953539280 scopus 로고    scopus 로고
    • The low synaptic release probability in vivo
    • Borst, J. (2010). The low synaptic release probability in vivo. Trends Neurosci., 33, 259-266.
    • (2010) Trends Neurosci. , vol.33 , pp. 259-266
    • Borst, J.1
  • 6
    • 65249120199 scopus 로고    scopus 로고
    • The probability of neurotransmitter release:Variability and feedback control at single synapses
    • Branco, T.,&Staras,K. (2009). The probability of neurotransmitter release:Variability and feedback control at single synapses. Nat. Rev. Neurosci., 10, 373-383.
    • (2009) Nat. Rev. Neurosci. , vol.10 , pp. 373-383
    • Branco, T.1    Staras, K.2
  • 7
    • 0038734257 scopus 로고    scopus 로고
    • Basic mechanisms for graded persistent activity: Discrete attractors, continuous attractors, and dynamic representations
    • Brody, C., Romo, R., & Kepecs, A. (2003). Basic mechanisms for graded persistent activity: Discrete attractors, continuous attractors, and dynamic representations. Curr. Opin. Neurobiol., 13, 204-211.
    • (2003) Curr. Opin. Neurobiol. , vol.13 , pp. 204-211
    • Brody, C.1    Romo, R.2    Kepecs, A.3
  • 8
    • 58549091090 scopus 로고    scopus 로고
    • State-dependent computations: Spatiotemporal processing in cortical networks
    • Buonomano, D.,&Maass,W. (2009). State-dependent computations: Spatiotemporal processing in cortical networks. Nat. Rev. Neurosci., 10, 113-125.
    • (2009) Nat. Rev. Neurosci. , vol.10 , pp. 113-125
    • Buonomano, D.1    Maass, W.2
  • 9
    • 77953355233 scopus 로고    scopus 로고
    • Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons
    • Büsing, L., Schrauwen, B., & Legenstein, R. (2010). Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural Comput., 22, 1272-1311.
    • (2010) Neural Comput. , vol.22 , pp. 1272-1311
    • Büsing, L.1    Schrauwen, B.2    Legenstein, R.3
  • 10
    • 77049173124 scopus 로고
    • Quantal components of the end-plate potential
    • Del Castillo, J., & Katz, B. (1954). Quantal components of the end-plate potential. J. Physiol. (London), 124, 560-573.
    • (1954) J. Physiol. (London) , vol.124 , pp. 560-573
    • Del Castillo, J.1    Katz, B.2
  • 11
    • 0033518170 scopus 로고    scopus 로고
    • Stable propagation of synchronous spiking in cortical neural networks
    • Diesmann, M.,Gewaltig,M.,&Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402, 529-533.
    • (1999) Nature , vol.402 , pp. 529-533
    • Diesmann, M.1    Gewaltig, M.2    Aertsen, A.3
  • 13
    • 33644898137 scopus 로고    scopus 로고
    • Polychronization: Computation with spikes
    • Izhikevich, E. (2006). Polychronization: Computation with spikes. Neural Comput, 18, 245-282.
    • (2006) Neural Comput , vol.18 , pp. 245-282
    • Izhikevich, E.1
  • 14
    • 42149192537 scopus 로고    scopus 로고
    • Large-scale model of mammalian thalamocortical systems
    • Izhikevich, E., & Edelman, G. (2008). Large-scale model of mammalian thalamocortical systems. Proc. Natl. Acad. Sci. USA, 105, 3593-3598.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 3593-3598
    • Izhikevich, E.1    Edelman, G.2
  • 15
    • 84891486422 scopus 로고    scopus 로고
    • The "echo state" approach to analysing and training recurrent neural networks
    • Jaeger, H. (2001). The "echo state" approach to analysing and training recurrent neural networks. Biol. Cybern., 81, 211-225.
    • (2001) Biol. Cybern. , vol.81 , pp. 211-225
    • Jaeger, H.1
  • 16
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    • Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304, 78-80.
    • (2004) Science , vol.304 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 17
    • 0025922918 scopus 로고
    • Co-evolution to the edge of chaos: Coupled fitness landscapes, poised states, and co-evolutionary avalanches
    • Kauffman, S., & Johnsen, S. (1991). Co-evolution to the edge of chaos: Coupled fitness landscapes, poised states, and co-evolutionary avalanches. J. Theor. Biol., 149, 467-505.
    • (1991) J. Theor. Biol. , vol.149 , pp. 467-505
    • Kauffman, S.1    Johnsen, S.2
  • 19
    • 45149138762 scopus 로고
    • Computation at the edge of chaos: Phase transitions and emergent computation
    • Langton,C. (1990).Computation at the edge of chaos: Phase transitions and emergent computation. Physica D: Nonlinear Phenomena, 42, 12-37.
    • (1990) Physica D: Nonlinear Phenomena , vol.42 , pp. 12-37
    • Langton, C.1
  • 20
    • 33846543881 scopus 로고    scopus 로고
    • Edge of chaos and prediction of computational performance for neural circuit models
    • Legenstein, R., & Maass, W. (2007). Edge of chaos and prediction of computational performance for neural circuit models. Neural Networks, 20, 323-334.
    • (2007) Neural Networks , vol.20 , pp. 323-334
    • Legenstein, R.1    Maass, W.2
  • 21
    • 84868159004 scopus 로고    scopus 로고
    • Slow dynamics and high variability in balanced cortical networks with clustered connections
    • Litwin-Kumar, A., & Doiron, B. (2012). Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat. Neurosci., 15(11), 1498-1505.
    • (2012) Nat. Neurosci. , vol.15 , Issue.11 , pp. 1498-1505
    • Litwin-Kumar, A.1    Doiron, B.2
  • 22
    • 77954231844 scopus 로고    scopus 로고
    • Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex
    • London, M., Roth, A., Beeren, L., Häusser, M., & Latham, P. E. (2010). Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature, 466, 123-127.
    • (2010) Nature , vol.466 , pp. 123-127
    • London, M.1    Roth, A.2    Beeren, L.3    Häusser, M.4    Latham, P.E.5
  • 23
    • 84898962053 scopus 로고    scopus 로고
    • Methods for estimating the computational power and generalization capability of neural microcircuits
    • L. K. Saul, Y. Weiss, & L. Bottou (Eds.) Cambridge, MA: MIT Press
    • Maass, W., Legenstein, R., & Bertschinger, N. (2005). Methods for estimating the computational power and generalization capability of neural microcircuits. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, 17 (pp. 865-872). Cambridge, MA: MIT Press.
    • (2005) Advances in neural information processing systems , vol.17 , pp. 865-872
    • Maass, W.1    Legenstein, R.2    Bertschinger, N.3
  • 24
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: A new framework for neural computation based on perturbations
    • Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput., 14, 2531-2560.
    • (2002) Neural Comput. , vol.14 , pp. 2531-2560
    • Maass, W.1    Natschläger, T.2    Markram, H.3
  • 25
    • 78650812064 scopus 로고    scopus 로고
    • Dynamical entropy production in spiking neuron networks in the balanced state
    • 268104
    • Monteforte, M., & Wolf, F. (2010). Dynamical entropy production in spiking neuron networks in the balanced state. Phys. Rev. Lett., 105, 268104.
    • (2010) Phys. Rev. Lett. , vol.105
    • Monteforte, M.1    Wolf, F.2
  • 27
    • 0029800695 scopus 로고    scopus 로고
    • How the brain keeps the eyes still
    • Seung, H. (1996). How the brain keeps the eyes still. Proc. Natl. Acad. Sci. USA, 93, 13339-13344.
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 13339-13344
    • Seung, H.1
  • 28
    • 68949147577 scopus 로고    scopus 로고
    • Generating coherent patterns of activity fromchaotic neural networks
    • Sussillo,D.,&Abbott, L. (2009). Generating coherent patterns of activity fromchaotic neural networks. Neuron, 63, 544-557.
    • (2009) Neuron , vol.63 , pp. 544-557
    • Sussillo, D.1    Abbott, L.2
  • 29
    • 0029835892 scopus 로고    scopus 로고
    • Chaos in neuronal networks with balanced excitatory and inhibitory activity
    • van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274, 1724-1726.
    • (1996) Science , vol.274 , pp. 1724-1726
    • van Vreeswijk, C.1    Sompolinsky, H.2
  • 30
    • 0032528729 scopus 로고    scopus 로고
    • Chaotic balanced state in a model of cortical circuits
    • van Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balanced state in a model of cortical circuits. Neural Comput., 10, 1321-1371.
    • (1998) Neural Comput. , vol.10 , pp. 1321-1371
    • van Vreeswijk, C.1    Sompolinsky, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.