-
1
-
-
6144229366
-
From attractor to chaotic saddle: A tale of transverse instability
-
Ashwin, P., Buescu, J., & Stewart, I. (1996). From attractor to chaotic saddle: A tale of transverse instability. Nonlinearity, 9, 703-737.
-
(1996)
Nonlinearity
, vol.9
, pp. 703-737
-
-
Ashwin, P.1
Buescu, J.2
Stewart, I.3
-
2
-
-
33646340670
-
On the sensitive dependence on initial conditions of the dynamics of networks of spiking neurons
-
Banerjee, A. (2006).On the sensitive dependence on initial conditions of the dynamics of networks of spiking neurons. J. Comput. Neurosci., 20, 321-348.
-
(2006)
J. Comput. Neurosci.
, vol.20
, pp. 321-348
-
-
Banerjee, A.1
-
3
-
-
2942552269
-
Real-time computation at the edge of chaos in recurrent neural networks
-
Bertschinger, N., & Natschläger, T. (2004). Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput., 16, 1413-1436.
-
(2004)
Neural Comput.
, vol.16
, pp. 1413-1436
-
-
Bertschinger, N.1
Natschläger, T.2
-
4
-
-
77953539280
-
The low synaptic release probability in vivo
-
Borst, J. (2010). The low synaptic release probability in vivo. Trends Neurosci., 33, 259-266.
-
(2010)
Trends Neurosci.
, vol.33
, pp. 259-266
-
-
Borst, J.1
-
6
-
-
65249120199
-
The probability of neurotransmitter release:Variability and feedback control at single synapses
-
Branco, T.,&Staras,K. (2009). The probability of neurotransmitter release:Variability and feedback control at single synapses. Nat. Rev. Neurosci., 10, 373-383.
-
(2009)
Nat. Rev. Neurosci.
, vol.10
, pp. 373-383
-
-
Branco, T.1
Staras, K.2
-
7
-
-
0038734257
-
Basic mechanisms for graded persistent activity: Discrete attractors, continuous attractors, and dynamic representations
-
Brody, C., Romo, R., & Kepecs, A. (2003). Basic mechanisms for graded persistent activity: Discrete attractors, continuous attractors, and dynamic representations. Curr. Opin. Neurobiol., 13, 204-211.
-
(2003)
Curr. Opin. Neurobiol.
, vol.13
, pp. 204-211
-
-
Brody, C.1
Romo, R.2
Kepecs, A.3
-
8
-
-
58549091090
-
State-dependent computations: Spatiotemporal processing in cortical networks
-
Buonomano, D.,&Maass,W. (2009). State-dependent computations: Spatiotemporal processing in cortical networks. Nat. Rev. Neurosci., 10, 113-125.
-
(2009)
Nat. Rev. Neurosci.
, vol.10
, pp. 113-125
-
-
Buonomano, D.1
Maass, W.2
-
9
-
-
77953355233
-
Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons
-
Büsing, L., Schrauwen, B., & Legenstein, R. (2010). Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural Comput., 22, 1272-1311.
-
(2010)
Neural Comput.
, vol.22
, pp. 1272-1311
-
-
Büsing, L.1
Schrauwen, B.2
Legenstein, R.3
-
10
-
-
77049173124
-
Quantal components of the end-plate potential
-
Del Castillo, J., & Katz, B. (1954). Quantal components of the end-plate potential. J. Physiol. (London), 124, 560-573.
-
(1954)
J. Physiol. (London)
, vol.124
, pp. 560-573
-
-
Del Castillo, J.1
Katz, B.2
-
11
-
-
0033518170
-
Stable propagation of synchronous spiking in cortical neural networks
-
Diesmann, M.,Gewaltig,M.,&Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402, 529-533.
-
(1999)
Nature
, vol.402
, pp. 529-533
-
-
Diesmann, M.1
Gewaltig, M.2
Aertsen, A.3
-
12
-
-
57749113625
-
Memory traces in dynamical systems
-
Ganguli, S.,Huh,D.,&Sompolinsky, H. (2008).Memory traces in dynamical systems. Proc. Natl. Acad. Sci. USA, 105, 18970-18975.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 18970-18975
-
-
Ganguli, S.1
Huh, D.2
Sompolinsky, H.3
-
13
-
-
33644898137
-
Polychronization: Computation with spikes
-
Izhikevich, E. (2006). Polychronization: Computation with spikes. Neural Comput, 18, 245-282.
-
(2006)
Neural Comput
, vol.18
, pp. 245-282
-
-
Izhikevich, E.1
-
14
-
-
42149192537
-
Large-scale model of mammalian thalamocortical systems
-
Izhikevich, E., & Edelman, G. (2008). Large-scale model of mammalian thalamocortical systems. Proc. Natl. Acad. Sci. USA, 105, 3593-3598.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 3593-3598
-
-
Izhikevich, E.1
Edelman, G.2
-
15
-
-
84891486422
-
The "echo state" approach to analysing and training recurrent neural networks
-
Jaeger, H. (2001). The "echo state" approach to analysing and training recurrent neural networks. Biol. Cybern., 81, 211-225.
-
(2001)
Biol. Cybern.
, vol.81
, pp. 211-225
-
-
Jaeger, H.1
-
16
-
-
1842421269
-
Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
-
Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304, 78-80.
-
(2004)
Science
, vol.304
, pp. 78-80
-
-
Jaeger, H.1
Haas, H.2
-
17
-
-
0025922918
-
Co-evolution to the edge of chaos: Coupled fitness landscapes, poised states, and co-evolutionary avalanches
-
Kauffman, S., & Johnsen, S. (1991). Co-evolution to the edge of chaos: Coupled fitness landscapes, poised states, and co-evolutionary avalanches. J. Theor. Biol., 149, 467-505.
-
(1991)
J. Theor. Biol.
, vol.149
, pp. 467-505
-
-
Kauffman, S.1
Johnsen, S.2
-
18
-
-
0036325682
-
Model for a robust neural integrator
-
Koulakov, A., Raghavachari, S., Kepecs, A., & Lisman, J. (2002). Model for a robust neural integrator. Nature Neurosci., 5, 775-782.
-
(2002)
Nature Neurosci.
, vol.5
, pp. 775-782
-
-
Koulakov, A.1
Raghavachari, S.2
Kepecs, A.3
Lisman, J.4
-
19
-
-
45149138762
-
Computation at the edge of chaos: Phase transitions and emergent computation
-
Langton,C. (1990).Computation at the edge of chaos: Phase transitions and emergent computation. Physica D: Nonlinear Phenomena, 42, 12-37.
-
(1990)
Physica D: Nonlinear Phenomena
, vol.42
, pp. 12-37
-
-
Langton, C.1
-
20
-
-
33846543881
-
Edge of chaos and prediction of computational performance for neural circuit models
-
Legenstein, R., & Maass, W. (2007). Edge of chaos and prediction of computational performance for neural circuit models. Neural Networks, 20, 323-334.
-
(2007)
Neural Networks
, vol.20
, pp. 323-334
-
-
Legenstein, R.1
Maass, W.2
-
21
-
-
84868159004
-
Slow dynamics and high variability in balanced cortical networks with clustered connections
-
Litwin-Kumar, A., & Doiron, B. (2012). Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat. Neurosci., 15(11), 1498-1505.
-
(2012)
Nat. Neurosci.
, vol.15
, Issue.11
, pp. 1498-1505
-
-
Litwin-Kumar, A.1
Doiron, B.2
-
22
-
-
77954231844
-
Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex
-
London, M., Roth, A., Beeren, L., Häusser, M., & Latham, P. E. (2010). Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature, 466, 123-127.
-
(2010)
Nature
, vol.466
, pp. 123-127
-
-
London, M.1
Roth, A.2
Beeren, L.3
Häusser, M.4
Latham, P.E.5
-
23
-
-
84898962053
-
Methods for estimating the computational power and generalization capability of neural microcircuits
-
L. K. Saul, Y. Weiss, & L. Bottou (Eds.) Cambridge, MA: MIT Press
-
Maass, W., Legenstein, R., & Bertschinger, N. (2005). Methods for estimating the computational power and generalization capability of neural microcircuits. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, 17 (pp. 865-872). Cambridge, MA: MIT Press.
-
(2005)
Advances in neural information processing systems
, vol.17
, pp. 865-872
-
-
Maass, W.1
Legenstein, R.2
Bertschinger, N.3
-
24
-
-
0036834701
-
Real-time computing without stable states: A new framework for neural computation based on perturbations
-
Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput., 14, 2531-2560.
-
(2002)
Neural Comput.
, vol.14
, pp. 2531-2560
-
-
Maass, W.1
Natschläger, T.2
Markram, H.3
-
25
-
-
78650812064
-
Dynamical entropy production in spiking neuron networks in the balanced state
-
268104
-
Monteforte, M., & Wolf, F. (2010). Dynamical entropy production in spiking neuron networks in the balanced state. Phys. Rev. Lett., 105, 268104.
-
(2010)
Phys. Rev. Lett.
, vol.105
-
-
Monteforte, M.1
Wolf, F.2
-
26
-
-
77954485043
-
Stimulus-dependent suppression of chaos in recurrent neural networks
-
011903
-
Rajan, K., Abbott, L., & Sompolinsky, H. (2010). Stimulus-dependent suppression of chaos in recurrent neural networks. Phys Rev. E Stat Nonlin. Soft Matter Phys., 82, 011903.
-
(2010)
Phys Rev. E Stat Nonlin. Soft Matter Phys.
, vol.82
-
-
Rajan, K.1
Abbott, L.2
Sompolinsky, H.3
-
27
-
-
0029800695
-
How the brain keeps the eyes still
-
Seung, H. (1996). How the brain keeps the eyes still. Proc. Natl. Acad. Sci. USA, 93, 13339-13344.
-
(1996)
Proc. Natl. Acad. Sci. USA
, vol.93
, pp. 13339-13344
-
-
Seung, H.1
-
28
-
-
68949147577
-
Generating coherent patterns of activity fromchaotic neural networks
-
Sussillo,D.,&Abbott, L. (2009). Generating coherent patterns of activity fromchaotic neural networks. Neuron, 63, 544-557.
-
(2009)
Neuron
, vol.63
, pp. 544-557
-
-
Sussillo, D.1
Abbott, L.2
-
29
-
-
0029835892
-
Chaos in neuronal networks with balanced excitatory and inhibitory activity
-
van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274, 1724-1726.
-
(1996)
Science
, vol.274
, pp. 1724-1726
-
-
van Vreeswijk, C.1
Sompolinsky, H.2
-
30
-
-
0032528729
-
Chaotic balanced state in a model of cortical circuits
-
van Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balanced state in a model of cortical circuits. Neural Comput., 10, 1321-1371.
-
(1998)
Neural Comput.
, vol.10
, pp. 1321-1371
-
-
van Vreeswijk, C.1
Sompolinsky, H.2
|