-
1
-
-
67649815010
-
Cellulases and biofuels
-
Wilson D.B. Cellulases and biofuels. Curr Opin Biotechnol 2009, 20:295-299.
-
(2009)
Curr Opin Biotechnol
, vol.20
, pp. 295-299
-
-
Wilson, D.B.1
-
2
-
-
77955980687
-
Protein engineering for bioenergy and biomass-based chemicals
-
Clarke N.D. Protein engineering for bioenergy and biomass-based chemicals. Curr Opin Struct Biol 2010, 20:527-532.
-
(2010)
Curr Opin Struct Biol
, vol.20
, pp. 527-532
-
-
Clarke, N.D.1
-
3
-
-
84899789529
-
Current developments in cellulase engineering
-
Kellermann S.J., Rentmeister A. Current developments in cellulase engineering. ChemBioEng Rev 2014, 1:6-13.
-
(2014)
ChemBioEng Rev
, vol.1
, pp. 6-13
-
-
Kellermann, S.J.1
Rentmeister, A.2
-
4
-
-
84863092120
-
Novel enzymes for the degradation of cellulose
-
Horn S.J., Vaaje-Kolstad G., Westereng B., Eijsink V.G. Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 2012, 5:1-13.
-
(2012)
Biotechnol Biofuels
, vol.5
, pp. 1-13
-
-
Horn, S.J.1
Vaaje-Kolstad, G.2
Westereng, B.3
Eijsink, V.G.4
-
5
-
-
84870201937
-
Highly thermostable fungal cellobiohydrolase I (Cel7A) engineered using predictive methods
-
Komor R.S., Romero P.A., Xie C.B., Arnold F.H. Highly thermostable fungal cellobiohydrolase I (Cel7A) engineered using predictive methods. Protein Eng Des Sel 2012, 25:827-833.
-
(2012)
Protein Eng Des Sel
, vol.25
, pp. 827-833
-
-
Komor, R.S.1
Romero, P.A.2
Xie, C.B.3
Arnold, F.H.4
-
6
-
-
65249175725
-
A family of thermostable fungal cellulases created by structure-guided recombination
-
Heinzelman P., Snow C.D., Wu I., Nguyen C., Villalobos A., Govindarajan S., Minshull J., Arnold F.H. A family of thermostable fungal cellulases created by structure-guided recombination. Proc Natl Acad Sci USA 2009, 106:5610-5615.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 5610-5615
-
-
Heinzelman, P.1
Snow, C.D.2
Wu, I.3
Nguyen, C.4
Villalobos, A.5
Govindarajan, S.6
Minshull, J.7
Arnold, F.H.8
-
7
-
-
78649852734
-
The O-glycosylated linker from the Trichoderma reesei family 7 cellulase is a flexible, disordered protein
-
Beckham G.T., Bomble Y.J., Matthews J.F., Taylor C.B., Resch M.G., Yarbrough J.M., Decker S.R., Bu L., Zhao X., Mccabe C. The O-glycosylated linker from the Trichoderma reesei family 7 cellulase is a flexible, disordered protein. Biophys J 2010, 99:3773-3781.
-
(2010)
Biophys J
, vol.99
, pp. 3773-3781
-
-
Beckham, G.T.1
Bomble, Y.J.2
Matthews, J.F.3
Taylor, C.B.4
Resch, M.G.5
Yarbrough, J.M.6
Decker, S.R.7
Bu, L.8
Zhao, X.9
Mccabe, C.10
-
8
-
-
84874295340
-
Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation
-
Sammond D.W., Payne C.M., Brunecky R., Himmel M.E., Crowley M.F., Beckham G.T. Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation. PLoS ONE 2012, 7:e48615.
-
(2012)
PLoS ONE
, vol.7
-
-
Sammond, D.W.1
Payne, C.M.2
Brunecky, R.3
Himmel, M.E.4
Crowley, M.F.5
Beckham, G.T.6
-
9
-
-
81755186906
-
Multiple functions of aromatic-carbohydrate interactions in a processive cellulase examined with molecular simulation
-
Payne C.M., Bomble Y., Taylor C.B., Mccabe C., Himmel M.E., Crowley M.F., Beckham G.T. Multiple functions of aromatic-carbohydrate interactions in a processive cellulase examined with molecular simulation. J Biol Chem 2011, 286:41028-41035.
-
(2011)
J Biol Chem
, vol.286
, pp. 41028-41035
-
-
Payne, C.M.1
Bomble, Y.2
Taylor, C.B.3
Mccabe, C.4
Himmel, M.E.5
Crowley, M.F.6
Beckham, G.T.7
-
10
-
-
70349991285
-
Modeling cellulase kinetics on lignocellulosic substrates
-
Bansal P., Hall M., Realff M.J., Lee J.H., Bommarius A.S. Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 2009, 27:833-848.
-
(2009)
Biotechnol Adv
, vol.27
, pp. 833-848
-
-
Bansal, P.1
Hall, M.2
Realff, M.J.3
Lee, J.H.4
Bommarius, A.S.5
-
11
-
-
77956242317
-
A mechanistic model of the enzymatic hydrolysis of cellulose
-
Levine S.E., Fox J.M., Blanch H.W., Clark D.S. A mechanistic model of the enzymatic hydrolysis of cellulose. Biotechnol Bioeng 2010, 107:37-51.
-
(2010)
Biotechnol Bioeng
, vol.107
, pp. 37-51
-
-
Levine, S.E.1
Fox, J.M.2
Blanch, H.W.3
Clark, D.S.4
-
12
-
-
84856839149
-
Initial- and processive-cut products reveal cellobiohydrolase rate limitations and the role of companion enzymes
-
Fox J.M., Levine S.E., Clark D.S., Blanch H.W. Initial- and processive-cut products reveal cellobiohydrolase rate limitations and the role of companion enzymes. Biochemistry 2012, 51:442-452.
-
(2012)
Biochemistry
, vol.51
, pp. 442-452
-
-
Fox, J.M.1
Levine, S.E.2
Clark, D.S.3
Blanch, H.W.4
-
13
-
-
84885918891
-
A steady-state theory for processive cellulases
-
Cruys-Bagger N., Elmerdahl J., Praestgaard E., Borch K., Westh P. A steady-state theory for processive cellulases. FEBS J 2013, 280:3952-3961.
-
(2013)
FEBS J
, vol.280
, pp. 3952-3961
-
-
Cruys-Bagger, N.1
Elmerdahl, J.2
Praestgaard, E.3
Borch, K.4
Westh, P.5
-
14
-
-
84890537940
-
Transient kinetics and rate-limiting steps for the processive cellobiohydrolase Cel7A: effects of substrate structure and carbohydrate binding domain
-
Cruys-Bagger N., Tatsumi H., Ren G.R., Borch K., Westh P. Transient kinetics and rate-limiting steps for the processive cellobiohydrolase Cel7A: effects of substrate structure and carbohydrate binding domain. Biochemistry 2013, 52:8938-8948.
-
(2013)
Biochemistry
, vol.52
, pp. 8938-8948
-
-
Cruys-Bagger, N.1
Tatsumi, H.2
Ren, G.R.3
Borch, K.4
Westh, P.5
-
15
-
-
78650950110
-
Processivity of cellobiohydrolases is limited by the substrate
-
Kurasin M., Valjamae P. Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 2011, 286:169-177.
-
(2011)
J Biol Chem
, vol.286
, pp. 169-177
-
-
Kurasin, M.1
Valjamae, P.2
-
16
-
-
84856578303
-
Elucidation of cellulose accessibility, hydrolysability and reactivity as the major limitations in the enzymatic hydrolysis of cellulose
-
Bansal P., Vowell B.J., Hall M., Realff M.J., Lee J.H., Bommarius A.S. Elucidation of cellulose accessibility, hydrolysability and reactivity as the major limitations in the enzymatic hydrolysis of cellulose. Bioresour Technol 2012, 107:243-250.
-
(2012)
Bioresour Technol
, vol.107
, pp. 243-250
-
-
Bansal, P.1
Vowell, B.J.2
Hall, M.3
Realff, M.J.4
Lee, J.H.5
Bommarius, A.S.6
-
17
-
-
77749315426
-
Cellulose crystallinity-a key predictor of the enzymatic hydrolysis rate
-
Hall M., Bansal P., Lee J.H., Realff M.J., Bommarius A.S. Cellulose crystallinity-a key predictor of the enzymatic hydrolysis rate. FEBS J 2010, 277:1571-1582.
-
(2010)
FEBS J
, vol.277
, pp. 1571-1582
-
-
Hall, M.1
Bansal, P.2
Lee, J.H.3
Realff, M.J.4
Bommarius, A.S.5
-
18
-
-
84874186405
-
Accessibility of cellulose: Structural changes and their reversibility in aqueous media
-
Ponni R., Kontturi E., Vuorinen T. Accessibility of cellulose: Structural changes and their reversibility in aqueous media. Carbohydr Polym 2013, 93:424-429.
-
(2013)
Carbohydr Polym
, vol.93
, pp. 424-429
-
-
Ponni, R.1
Kontturi, E.2
Vuorinen, T.3
-
19
-
-
82455164783
-
The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility
-
Kumar L., Arantes V., Chandra R., Saddler J. The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 2012, 103:201-208.
-
(2012)
Bioresour Technol
, vol.103
, pp. 201-208
-
-
Kumar, L.1
Arantes, V.2
Chandra, R.3
Saddler, J.4
-
20
-
-
68649112813
-
Accessibility and crystallinity of cellulose
-
Ioelovich M. Accessibility and crystallinity of cellulose. Bioresources 2009, 4:1168-1177.
-
(2009)
Bioresources
, vol.4
, pp. 1168-1177
-
-
Ioelovich, M.1
-
21
-
-
79955785662
-
The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings
-
Roberts K.M., Lavenson D.M., Tozzi E.J., Mccarthy M.J., Jeoh T. The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings. Cellulose 2011, 18:759-773.
-
(2011)
Cellulose
, vol.18
, pp. 759-773
-
-
Roberts, K.M.1
Lavenson, D.M.2
Tozzi, E.J.3
Mccarthy, M.J.4
Jeoh, T.5
-
22
-
-
84877698510
-
The tryptophan residue at the active site tunnel entrance of Trichoderma reesei cellobiohydrolase Cel7a is important for initiation of degradation of crystalline cellulose
-
Nakamura A., Tsukada T., Auer S., Furuta T., Wada M., Koivula A., Igarashi K., Samejima M. The tryptophan residue at the active site tunnel entrance of Trichoderma reesei cellobiohydrolase Cel7a is important for initiation of degradation of crystalline cellulose. J Biol Chem 2013, 288:13503-13510.
-
(2013)
J Biol Chem
, vol.288
, pp. 13503-13510
-
-
Nakamura, A.1
Tsukada, T.2
Auer, S.3
Furuta, T.4
Wada, M.5
Koivula, A.6
Igarashi, K.7
Samejima, M.8
-
23
-
-
70350493135
-
Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B
-
Vuong T.V., Wilson D.B. Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B. Appl Environ Microbiol 2009, 75:6655-6661.
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 6655-6661
-
-
Vuong, T.V.1
Wilson, D.B.2
-
24
-
-
68149155524
-
Probing the role of N-linked glycans in the stability and activity of fungal cellobiohydrolases by mutational analysis
-
Adney W.S., Jeoh T., Beckham G.T., Chou Y.-C., Baker J.O., Michener W., Brunecky R., Himmel M.E. Probing the role of N-linked glycans in the stability and activity of fungal cellobiohydrolases by mutational analysis. Cellulose 2009, 16:699-709.
-
(2009)
Cellulose
, vol.16
, pp. 699-709
-
-
Adney, W.S.1
Jeoh, T.2
Beckham, G.T.3
Chou, Y.-C.4
Baker, J.O.5
Michener, W.6
Brunecky, R.7
Himmel, M.E.8
-
25
-
-
84899809639
-
-
Cellulase variants with reduced inhibition by glucose. WO Patent 2,009,089,630;
-
Lavigne J, Hill C, Tremblay A, St-Pierre P, Tomashek J. Cellulase variants with reduced inhibition by glucose. WO Patent 2,009,089,630; 2009.
-
(2009)
-
-
Lavigne, J.1
Hill, C.2
Tremblay, A.3
St-Pierre, P.4
Tomashek, J.5
-
26
-
-
84861158254
-
Approaches for improving thermostability characteristics in cellulases
-
Anbar M., Bayer E.A. Approaches for improving thermostability characteristics in cellulases. Cellulases 2012, 510:261-271.
-
(2012)
Cellulases
, vol.510
, pp. 261-271
-
-
Anbar, M.1
Bayer, E.A.2
-
27
-
-
70350351556
-
SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability
-
Heinzelman P., Snow C.D., Smith M.A., Yu X.L., Kannan A., Boulware K., Villalobos A., Govindarajan S., Minshull J., Arnold F.H. SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability. J Biol Chem 2009, 284:26229-26233.
-
(2009)
J Biol Chem
, vol.284
, pp. 26229-26233
-
-
Heinzelman, P.1
Snow, C.D.2
Smith, M.A.3
Yu, X.L.4
Kannan, A.5
Boulware, K.6
Villalobos, A.7
Govindarajan, S.8
Minshull, J.9
Arnold, F.H.10
-
28
-
-
78650850328
-
Thermostability enhancement of Clostridium thermocellum cellulosomal endoglucanase Cel8A by a single glycine substitution
-
Anbar M., Lamed R., Bayer E.A. Thermostability enhancement of Clostridium thermocellum cellulosomal endoglucanase Cel8A by a single glycine substitution. Chemcatchem 2010, 2:997-1003.
-
(2010)
Chemcatchem
, vol.2
, pp. 997-1003
-
-
Anbar, M.1
Lamed, R.2
Bayer, E.A.3
-
29
-
-
77958179580
-
Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination
-
Heinzelman P., Komor R., Kanaan A., Romero P., Yu X.L., Mohler S., Snow C., Arnold F. Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination. Protein Eng Des Sel 2010, 23:871-880.
-
(2010)
Protein Eng Des Sel
, vol.23
, pp. 871-880
-
-
Heinzelman, P.1
Komor, R.2
Kanaan, A.3
Romero, P.4
Yu, X.L.5
Mohler, S.6
Snow, C.7
Arnold, F.8
-
30
-
-
84879033533
-
Role of cysteine residues in thermal inactivation of fungal Cel6A cellobiohydrolases
-
Wu I., Heel T., Arnold F.H. Role of cysteine residues in thermal inactivation of fungal Cel6A cellobiohydrolases. Biochim Biophys Acta-Proteins Proteomic 2013, 1834:1539-1544.
-
(2013)
Biochim Biophys Acta-Proteins Proteomic
, vol.1834
, pp. 1539-1544
-
-
Wu, I.1
Heel, T.2
Arnold, F.H.3
-
31
-
-
84871231694
-
Advanced evolutionary molecular engineering to produce thermostable cellulase by using a small but efficient library
-
Ito Y., Ikeuchi A., Imamura C. Advanced evolutionary molecular engineering to produce thermostable cellulase by using a small but efficient library. Protein Eng Des Sel 2013, 26:73-79.
-
(2013)
Protein Eng Des Sel
, vol.26
, pp. 73-79
-
-
Ito, Y.1
Ikeuchi, A.2
Imamura, C.3
-
32
-
-
84861149123
-
Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis
-
Anbar M., Gul O., Lamed R., Sezerman U.O., Bayer E.A. Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis. Appl Environ Microbiol 2012, 78:3458-3464.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 3458-3464
-
-
Anbar, M.1
Gul, O.2
Lamed, R.3
Sezerman, U.O.4
Bayer, E.A.5
-
33
-
-
79955971297
-
Probing carbohydrate product expulsion from a processive cellulase with multiple absolute binding free energy methods
-
Bu L., Beckham G.T., Shirts M.R., Nimlos M.R., Adney W.S., Himmel M.E., Crowley M.F. Probing carbohydrate product expulsion from a processive cellulase with multiple absolute binding free energy methods. J Biol Chem 2011, 286:18161-18169.
-
(2011)
J Biol Chem
, vol.286
, pp. 18161-18169
-
-
Bu, L.1
Beckham, G.T.2
Shirts, M.R.3
Nimlos, M.R.4
Adney, W.S.5
Himmel, M.E.6
Crowley, M.F.7
-
34
-
-
76249113333
-
Identification of amino acids responsible for processivity in a family 1 carbohydrate-binding module from a fungal cellulase
-
Beckham G.T., Matthews J.F., Bomble Y.J., Bu L.T., Adney W.S., Himmel M.E., Nimlos M.R., Crowley M.F. Identification of amino acids responsible for processivity in a family 1 carbohydrate-binding module from a fungal cellulase. J Phys Chem B 2010, 114:1447-1453.
-
(2010)
J Phys Chem B
, vol.114
, pp. 1447-1453
-
-
Beckham, G.T.1
Matthews, J.F.2
Bomble, Y.J.3
Bu, L.T.4
Adney, W.S.5
Himmel, M.E.6
Nimlos, M.R.7
Crowley, M.F.8
-
35
-
-
84856248919
-
Computational investigation of glycosylation effects on a family 1 carbohydrate-binding module
-
Taylor C.B., Talib M.F., Mccabe C., Bu L.T., Adney W.S., Himmel M.E., Crowley M.F., Beckham G.T. Computational investigation of glycosylation effects on a family 1 carbohydrate-binding module. J Biol Chem 2012, 287:3147-3155.
-
(2012)
J Biol Chem
, vol.287
, pp. 3147-3155
-
-
Taylor, C.B.1
Talib, M.F.2
Mccabe, C.3
Bu, L.T.4
Adney, W.S.5
Himmel, M.E.6
Crowley, M.F.7
Beckham, G.T.8
-
36
-
-
84899799637
-
-
Novel lignin-resistant cellulase enzymes. WO Patent 2,010,096,931; The mutant of arginine and sernine substituted to glutamic acid and threonine, respectively, exhibited increased hydrolysis activity in presence of lignin and decreased lignin binding. The result of this study indicated that protein engineering of linker domain of cellobiohydrolases can yield lignin resistance.
-
Scott BR, St-Pierre P, Lavigne JA, Masri N, White TC, Tomashek JJ. Novel lignin-resistant cellulase enzymes. WO Patent 2,010,096,931; 2010. The mutant of arginine and sernine substituted to glutamic acid and threonine, respectively, exhibited increased hydrolysis activity in presence of lignin and decreased lignin binding. The result of this study indicated that protein engineering of linker domain of cellobiohydrolases can yield lignin resistance.
-
(2010)
-
-
Scott, B.R.1
St-Pierre, P.2
Lavigne, J.A.3
Masri, N.4
White, T.C.5
Tomashek, J.J.6
-
37
-
-
84883372876
-
Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose
-
Payne C.M., Resch M.G., Chen L., Crowley M.F., Himmel M.E., Taylor L.E., Sandgren M., Ståhlberg J., Stals I., Tan Z. Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose. Proc Natl Acad Sci 2013, 110:14646-14651.
-
(2013)
Proc Natl Acad Sci
, vol.110
, pp. 14646-14651
-
-
Payne, C.M.1
Resch, M.G.2
Chen, L.3
Crowley, M.F.4
Himmel, M.E.5
Taylor, L.E.6
Sandgren, M.7
Ståhlberg, J.8
Stals, I.9
Tan, Z.10
-
39
-
-
80052394586
-
The cellulose-binding domain of cellobiohydrolase Cel7A from Trichoderma reesei is also a thermostabilizing domain
-
Hall M., Rubin J., Behrens S.H., Bommarius A.S. The cellulose-binding domain of cellobiohydrolase Cel7A from Trichoderma reesei is also a thermostabilizing domain. J Biotechnol 2011, 155:370-376.
-
(2011)
J Biotechnol
, vol.155
, pp. 370-376
-
-
Hall, M.1
Rubin, J.2
Behrens, S.H.3
Bommarius, A.S.4
-
40
-
-
84878575808
-
Fusing a carbohydrate-binding module into the Aspergillus usamii beta-mannanase to improve its thermostability and cellulose-binding capacity by in silico design
-
Tang C.D., Li J.F., Wei X.H., Min R., Gao S.J., Wang J.Q., Yin X., Wu M.C. Fusing a carbohydrate-binding module into the Aspergillus usamii beta-mannanase to improve its thermostability and cellulose-binding capacity by in silico design. PLoS ONE 2013, 8.
-
(2013)
PLoS ONE
, pp. 8
-
-
Tang, C.D.1
Li, J.F.2
Wei, X.H.3
Min, R.4
Gao, S.J.5
Wang, J.Q.6
Yin, X.7
Wu, M.C.8
-
41
-
-
84875786949
-
Fusion of cellulose binding domain from Trichoderma reesei CBHI to Cryptococcus sp S-2 cellulase enhances its binding affinity and its cellulolytic activity to insoluble cellulosic substrates
-
Thongekkaew J., Ikeda H., Masaki K., Iefuji H. Fusion of cellulose binding domain from Trichoderma reesei CBHI to Cryptococcus sp S-2 cellulase enhances its binding affinity and its cellulolytic activity to insoluble cellulosic substrates. Enzyme Microb Technol 2013, 52:241-246.
-
(2013)
Enzyme Microb Technol
, vol.52
, pp. 241-246
-
-
Thongekkaew, J.1
Ikeda, H.2
Masaki, K.3
Iefuji, H.4
-
42
-
-
67650248272
-
Fusion of a family 1 carbohydrate binding module of Aspergillus niger to the Pycnoporus cinnabarinus laccase for efficient softwood kraft pulp biobleaching
-
Ravalason H., Herpoel-Gimbert I., Record E., Bertaud F., Grisel S., de Weert S., van den Hondel C.A., Asther M., Petit-Conil M., Sigoillot J.C. Fusion of a family 1 carbohydrate binding module of Aspergillus niger to the Pycnoporus cinnabarinus laccase for efficient softwood kraft pulp biobleaching. J Biotechnol 2009, 142:220-226.
-
(2009)
J Biotechnol
, vol.142
, pp. 220-226
-
-
Ravalason, H.1
Herpoel-Gimbert, I.2
Record, E.3
Bertaud, F.4
Grisel, S.5
De Weert, S.6
Van Den Hondel, C.A.7
Asther, M.8
Petit-Conil, M.9
Sigoillot, J.C.10
-
43
-
-
4744368323
-
Carbohydrate-binding modules: fine-tuning polysaccharide recognition
-
Boraston A.B., Bolam D.N., Gilbert H.J., Davies G.J. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004, 382:769-781.
-
(2004)
Biochem J
, vol.382
, pp. 769-781
-
-
Boraston, A.B.1
Bolam, D.N.2
Gilbert, H.J.3
Davies, G.J.4
-
44
-
-
77950590882
-
Increased crystalline cellulose activity via combinations of amino acid changes in the family 9 catalytic domain and family 3c cellulose binding module of Thermobifida fusca Cel9A
-
Li Y., Irwin D.C., Wilson D.B. Increased crystalline cellulose activity via combinations of amino acid changes in the family 9 catalytic domain and family 3c cellulose binding module of Thermobifida fusca Cel9A. Appl Environ Microbiol 2010, 76:2582-2588.
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 2582-2588
-
-
Li, Y.1
Irwin, D.C.2
Wilson, D.B.3
-
45
-
-
84879583804
-
The role of carbohydrate binding module (CBM) at high substrate consistency: comparison of Trichoderma reesei and Thermoascus aurantiacus Cel7A (CBHI) and Cel5A (EGII)
-
Le Costaouec T., Pakarinen A., Varnai A., Puranen T., Viikari L. The role of carbohydrate binding module (CBM) at high substrate consistency: comparison of Trichoderma reesei and Thermoascus aurantiacus Cel7A (CBHI) and Cel5A (EGII). Bioresour Technol 2013, 143:196-203.
-
(2013)
Bioresour Technol
, vol.143
, pp. 196-203
-
-
Le Costaouec, T.1
Pakarinen, A.2
Varnai, A.3
Puranen, T.4
Viikari, L.5
-
46
-
-
84874208200
-
Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs
-
Varnai A., Siika-Aho M., Viikari L. Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs. Biotechnol Biofuels 2013, 6:30.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 30
-
-
Varnai, A.1
Siika-Aho, M.2
Viikari, L.3
-
47
-
-
34249740743
-
Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A
-
Li Y., Irwin D.C., Wilson D.B. Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol 2007, 73:3165-3172.
-
(2007)
Appl Environ Microbiol
, vol.73
, pp. 3165-3172
-
-
Li, Y.1
Irwin, D.C.2
Wilson, D.B.3
-
48
-
-
73649106924
-
High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose
-
Igarashi K., Koivula A., Wada M., Kimura S., Penttila M., Samejima M. High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 2009, 284:36186-36190.
-
(2009)
J Biol Chem
, vol.284
, pp. 36186-36190
-
-
Igarashi, K.1
Koivula, A.2
Wada, M.3
Kimura, S.4
Penttila, M.5
Samejima, M.6
-
49
-
-
77950630499
-
Engineering a family 9 processive endoglucanase from Paenibacillus barcinonensis displaying a novel architecture
-
Chiriac A.I., Cadena E.M., Vidal T., Torres A.L., Diaz P., Pastor F.I. Engineering a family 9 processive endoglucanase from Paenibacillus barcinonensis displaying a novel architecture. Appl Microbiol Biotechnol 2010, 86:1125-1134.
-
(2010)
Appl Microbiol Biotechnol
, vol.86
, pp. 1125-1134
-
-
Chiriac, A.I.1
Cadena, E.M.2
Vidal, T.3
Torres, A.L.4
Diaz, P.5
Pastor, F.I.6
-
50
-
-
0031897880
-
Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis
-
Irwin D., Shin D.H., Zhang S., Barr B.K., Sakon J., Karplus P.A., Wilson D.B. Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol 1998, 180:1709-1714.
-
(1998)
J Bacteriol
, vol.180
, pp. 1709-1714
-
-
Irwin, D.1
Shin, D.H.2
Zhang, S.3
Barr, B.K.4
Sakon, J.5
Karplus, P.A.6
Wilson, D.B.7
-
51
-
-
84873881959
-
Processivity and enzymatic mode of a glycoside hydrolase family 5 endoglucanase from Volvariella volvacea
-
Zheng F., Ding S. Processivity and enzymatic mode of a glycoside hydrolase family 5 endoglucanase from Volvariella volvacea. Appl Environ Microbiol 2013, 79:989-996.
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 989-996
-
-
Zheng, F.1
Ding, S.2
-
52
-
-
77649189293
-
The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers
-
Ciolacu D., Kovac J., Kokol V. The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers. Carbohydr Res 2010, 345:621-630.
-
(2010)
Carbohydr Res
, vol.345
, pp. 621-630
-
-
Ciolacu, D.1
Kovac, J.2
Kokol, V.3
-
53
-
-
78650839737
-
Biological pretreatment of cellulose: enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases
-
Hall M., Bansal P., Lee J.H., Realff M.J., Bommarius A.S. Biological pretreatment of cellulose: enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Bioresour Technol 2011, 102:2910-2915.
-
(2011)
Bioresour Technol
, vol.102
, pp. 2910-2915
-
-
Hall, M.1
Bansal, P.2
Lee, J.H.3
Realff, M.J.4
Bommarius, A.S.5
-
54
-
-
84871830583
-
Characteristics of the binding of a bacterial expansin (BsEXLX1) to microcrystalline cellulose
-
Kim I.J., Ko H.J., Kim T.W., Choi I.G., Kim K.H. Characteristics of the binding of a bacterial expansin (BsEXLX1) to microcrystalline cellulose. Biotechnol Bioeng 2013, 110:401-407.
-
(2013)
Biotechnol Bioeng
, vol.110
, pp. 401-407
-
-
Kim, I.J.1
Ko, H.J.2
Kim, T.W.3
Choi, I.G.4
Kim, K.H.5
-
55
-
-
77956043498
-
An expansin-like protein from Hahella chejuensis binds cellulose and enhances cellulase activity
-
Lee H.J., Lee S., Ko H-j, Kim K.H., Choi I.-G. An expansin-like protein from Hahella chejuensis binds cellulose and enhances cellulase activity. Mol Cells 2010, 29:379-385.
-
(2010)
Mol Cells
, vol.29
, pp. 379-385
-
-
Lee, H.J.1
Lee, S.2
Ko, H.-J.3
Kim, K.H.4
Choi, I.-G.5
-
56
-
-
80053172085
-
How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis
-
Jäger G., Girfoglio M., Dollo F., Rinaldi R., Bongard H., Commandeur U., Fischer R., Spiess A.C., Büchs J. How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis. Biotechnol Biofuels 2011, 4:33.
-
(2011)
Biotechnol Biofuels
, vol.4
, pp. 33
-
-
Jäger, G.1
Girfoglio, M.2
Dollo, F.3
Rinaldi, R.4
Bongard, H.5
Commandeur, U.6
Fischer, R.7
Spiess, A.C.8
Büchs, J.9
-
57
-
-
84879820772
-
Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose
-
Nakatani Y., Yamada R., Ogino C., Kondo A. Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose. Microb Cell Fact 2013, 12:66.
-
(2013)
Microb Cell Fact
, vol.12
, pp. 66
-
-
Nakatani, Y.1
Yamada, R.2
Ogino, C.3
Kondo, A.4
|