메뉴 건너뛰기




Volumn 5761 LNCS, Issue PART 1, 2009, Pages 975-983

Robust extrapolation scheme for fast estimation of 3D Ising field partition functions: Application to within-subject fMRI data analysis

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN ACTIVITY; BRAIN REGIONS; COMPUTATIONAL BURDEN; DATA SETS; EXTRAPOLATION METHODS; EXTRAPOLATION SCHEMES; FAST ESTIMATION; FMRI DATA; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HIDDEN STATE; INHOMOGENEITIES; JOINT DETECTION; MARKOV RANDOM FIELDS; NUMERICAL SCHEME; PARTITION FUNCTIONS; SAMPLING METHOD; SPATIAL CORRELATIONS; SPATIALLY ADAPTIVE;

EID: 79551684968     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-04268-3_120     Document Type: Conference Paper
Times cited : (6)

References (8)
  • 1
    • 34547522766 scopus 로고    scopus 로고
    • Spatial mixture modelling for the joint detection-estimation of brain activity in fMRI
    • Vincent, T., Ciuciu, P., Idier, J.: Spatial mixture modelling for the joint detection-estimation of brain activity in fMRI. In: 32th Proc. IEEE ICASSP, Honolulu, Hawaii, vol. I, pp. 325-328 (2007)
    • (2007) 32th Proc. IEEE ICASSP, Honolulu, Hawaii , vol.1 , pp. 325-328
    • Vincent, T.1    Ciuciu, P.2    Idier, J.3
  • 2
    • 21444451325 scopus 로고    scopus 로고
    • Simulating ratios of normalizing constants via a simple identity: A theoretical exploration
    • Meng, X., Wong, W.: Simulating ratios of normalizing constants via a simple identity: a theoretical exploration. Statistica Sinica 6, 831-860 (1996) (Pubitemid 127004410)
    • (1996) Statistica Sinica , vol.6 , Issue.4 , pp. 831-860
    • Meng, X.-L.1    Wong, W.H.2
  • 3
    • 0000736067 scopus 로고    scopus 로고
    • Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling
    • Gelman, A., Meng, X.L.: Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Statistical Science 13, 163-185 (1998) (Pubitemid 128466008)
    • (1998) Statistical Science , vol.13 , Issue.2 , pp. 163-185
    • Gelman, A.1    Meng, X.-L.2
  • 4
    • 0036434775 scopus 로고    scopus 로고
    • Modelling spatially correlated data via mixtures: A Bayesian approach
    • Fernández, S., Green, P.J.: Modelling spatially correlated data via mixtures: a Bayesian approach. J. R. Statist. Soc. B 64, 805-826 (2002)
    • (2002) J. R. Statist. Soc. B , vol.64 , pp. 805-826
    • Fernández, S.1    Green, P.J.2
  • 5
    • 11844293467 scopus 로고    scopus 로고
    • Mixture models with adaptive spatial regularization for segmentation with an application to fMRI data
    • Woolrich, M., Behrens, T., Beckmann, C., Smith, S.: Mixture models with adaptive spatial regularization for segmentation with an application to fMRI data. IEEE Trans. Med. Imag. 24, 1-11 (2005)
    • (2005) IEEE Trans. Med. Imag. , vol.24 , pp. 1-11
    • Woolrich, M.1    Behrens, T.2    Beckmann, C.3    Smith, S.4
  • 6
    • 44649099442 scopus 로고    scopus 로고
    • A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI
    • Makni, S., Idier, J., Vincent, T., Thirion, B., Dehaene-Lambertz, G., Ciuciu, P.: A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI. Neuroimage 41, 941-969 (2008)
    • (2008) Neuroimage , vol.41 , pp. 941-969
    • Makni, S.1    Idier, J.2    Vincent, T.3    Thirion, B.4    Dehaene-Lambertz, G.5    Ciuciu, P.6
  • 7
    • 33746835024 scopus 로고    scopus 로고
    • Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets
    • Thirion, B., Flandin, G., Pinel, P., Roche, A., Ciuciu, P., Poline, J.B.: Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets. Hum. Brain Mapp. 27, 678-693 (2006)
    • (2006) Hum. Brain Mapp. , vol.27 , pp. 678-693
    • Thirion, B.1    Flandin, G.2    Pinel, P.3    Roche, A.4    Ciuciu, P.5    Poline, J.B.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.