메뉴 건너뛰기




Volumn 67, Issue 9, 2014, Pages 1673-1681

Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media

Author keywords

Convergence; Fractional derivative of variable order; Fractional percolation equation; Implicit alternating direct method; Stability; Variable coefficients

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; MATHEMATICAL OPERATORS; PARTIAL DIFFERENTIAL EQUATIONS; POROUS MATERIALS; SOLUTE TRANSPORT; SOLVENTS; TWO DIMENSIONAL;

EID: 84899637563     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2014.03.003     Document Type: Article
Times cited : (30)

References (28)
  • 2
    • 63649101659 scopus 로고    scopus 로고
    • Seepage flow and consolidation in a deforming porous medium
    • N. Petford, and M.A. Koenders Seepage flow and consolidation in a deforming porous medium Geophys. Res. Abstr. 5 2003 13329
    • (2003) Geophys. Res. Abstr. , vol.5 , pp. 13329
    • Petford, N.1    Koenders, M.A.2
  • 3
    • 0032307661 scopus 로고    scopus 로고
    • Approximate analytical solution for seepage flow with fractional derivatives in porous media
    • Ji-Huan He Approximate analytical solution for seepage flow with fractional derivatives in porous media Comput. Methods Appl. Mech. Engrg. 167 1998 57 68
    • (1998) Comput. Methods Appl. Mech. Engrg. , vol.167 , pp. 57-68
    • He, J.-H.1
  • 5
    • 67349146657 scopus 로고    scopus 로고
    • Feller semigroups obtained by variable order subordination
    • K.P. Evans, and N. Jacob Feller semigroups obtained by variable order subordination Rev. Mat. Complut. 20 2 2007 293 307
    • (2007) Rev. Mat. Complut. , vol.20 , Issue.2 , pp. 293-307
    • Evans, K.P.1    Jacob, N.2
  • 6
    • 67349098149 scopus 로고    scopus 로고
    • Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation
    • R. Lin, F. Liu, V. Anh, and I. Turner Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation Appl. Math. Comput. 212 2004 435 445
    • (2004) Appl. Math. Comput. , vol.212 , pp. 435-445
    • Lin, R.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 7
    • 2442585557 scopus 로고    scopus 로고
    • Fractional generalized random fields of variable order
    • M.D. Ruiz-Medina, V.V. Anh, and J.M. Angulo Fractional generalized random fields of variable order Stoch. Anal. Appl. 22 2 2004 775 799
    • (2004) Stoch. Anal. Appl. , vol.22 , Issue.2 , pp. 775-799
    • Ruiz-Medina, M.D.1    Anh, V.V.2    Angulo, J.M.3
  • 8
    • 84907893973 scopus 로고    scopus 로고
    • Numerical methods for the variable-order fractional advection-diffusion with a nonlinear source term
    • P. Zhuang, F. Liu, V. Anh, and I. Turner Numerical methods for the variable-order fractional advection-diffusion with a nonlinear source term SIAM J. Numer. Anal. 47 3 2009 1760 1781
    • (2009) SIAM J. Numer. Anal. , vol.47 , Issue.3 , pp. 1760-1781
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 9
    • 77951208473 scopus 로고    scopus 로고
    • Fractional differential models for anomalous diffusion
    • H. Sun, W. Chen, C. Li, and Y. Chen Fractional differential models for anomalous diffusion Physica A 389 2010 2719 2724
    • (2010) Physica A , vol.389 , pp. 2719-2724
    • Sun, H.1    Chen, W.2    Li, C.3    Chen, Y.4
  • 10
    • 84861220597 scopus 로고    scopus 로고
    • Finite difference methods for fractional differential equations
    • C. Li, and F. Zeng Finite difference methods for fractional differential equations Int. J. Bifurcation Chaos 22 4 2012 1230014
    • (2012) Int. J. Bifurcation Chaos , vol.22 , Issue.4 , pp. 1230014
    • Li, C.1    Zeng, F.2
  • 11
    • 34547673244 scopus 로고    scopus 로고
    • Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation
    • F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation J. Appl. Math. Comput. 191 2007 12 21
    • (2007) J. Appl. Math. Comput. , vol.191 , pp. 12-21
    • Liu, F.1    Zhuang, P.2    Anh, V.3    Turner, I.4    Burrage, K.5
  • 12
    • 25444463578 scopus 로고    scopus 로고
    • Finite difference methods for two-dimensional fractional dispersion equation
    • M.M. Meerschaert, H.P. Scheffler, and C. Tadjeran Finite difference methods for two-dimensional fractional dispersion equation J. Comput. Phys. 211 2006 249 261
    • (2006) J. Comput. Phys. , vol.211 , pp. 249-261
    • Meerschaert, M.M.1    Scheffler, H.P.2    Tadjeran, C.3
  • 13
    • 33751548431 scopus 로고    scopus 로고
    • Numerical simulation for solute transport in fractal porous media
    • F. Liu, V. Anh, I. Turner, and P. Zhuang Numerical simulation for solute transport in fractal porous media ANZIAM J. 45 E 2004 461 473
    • (2004) ANZIAM J. , vol.45 , Issue.E , pp. 461-473
    • Liu, F.1    Anh, V.2    Turner, I.3    Zhuang, P.4
  • 14
    • 28044468843 scopus 로고    scopus 로고
    • Finite difference approximations for two-sided space-fractional partial differential equations
    • M.M. Meerschaert, and C. Tadjeran Finite difference approximations for two-sided space-fractional partial differential equations J. Appl. Numer. Math. 56 2006 80 90
    • (2006) J. Appl. Numer. Math. , vol.56 , pp. 80-90
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 15
    • 33846798041 scopus 로고    scopus 로고
    • Approximation of the Levy-Feller advection-dispersion process by random walk and finite difference method
    • Q. Liu, F. Liu, V. Anh, and I. Turner Approximation of the Levy-Feller advection-dispersion process by random walk and finite difference method J. Phys. Comp. 222 2007 57 70
    • (2007) J. Phys. Comp. , vol.222 , pp. 57-70
    • Liu, Q.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 16
    • 84868214613 scopus 로고    scopus 로고
    • Numerical methods and analysis for a class of fractional advection-dispersion models
    • F. Liu, P. Zhuang, and K. Burrage Numerical methods and analysis for a class of fractional advection-dispersion models Comput. Math. Appl. 64 2012 2990 3007
    • (2012) Comput. Math. Appl. , vol.64 , pp. 2990-3007
    • Liu, F.1    Zhuang, P.2    Burrage, K.3
  • 17
    • 84890879623 scopus 로고    scopus 로고
    • Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term
    • F. Liu, S. Chen, I. Turner, K. Burrage, and V. Anh Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term Cent. Eur. J. Phys 1110 2013 1221 1232
    • (2013) Cent. Eur. J. Phys , vol.1110 , pp. 1221-1232
    • Liu, F.1    Chen, S.2    Turner, I.3    Burrage, K.4    Anh, V.5
  • 18
    • 84871790575 scopus 로고    scopus 로고
    • Numerical methods for solving the multi-term time fractional wave equations
    • F. Liu, M.M. Meerschaert, R. McGough, P. Zhuang, and Q. Liu Numerical methods for solving the multi-term time fractional wave equations Fract. Calc. Appl. Anal. 16 1 2013 9 25
    • (2013) Fract. Calc. Appl. Anal. , vol.16 , Issue.1 , pp. 9-25
    • Liu, F.1    Meerschaert, M.M.2    McGough, R.3    Zhuang, P.4    Liu, Q.5
  • 21
    • 14644446063 scopus 로고    scopus 로고
    • Least squares finite element solution of a fractional order two-point boundary value problem
    • G.J. Fix, and J.P. Roop Least squares finite element solution of a fractional order two-point boundary value problem J. Comput. Math. Appl. 48 2004 1017 1033
    • (2004) J. Comput. Math. Appl. , vol.48 , pp. 1017-1033
    • Fix, G.J.1    Roop, J.P.2
  • 22
    • 51749116733 scopus 로고    scopus 로고
    • Finite difference approximations for the Fokker-Planck equation
    • S. Chen, F. Liu, P. Zhuang, and V. Anh Finite difference approximations for the Fokker-Planck equation Appl. Math. Model. 33 2009 256 273
    • (2009) Appl. Math. Model. , vol.33 , pp. 256-273
    • Chen, S.1    Liu, F.2    Zhuang, P.3    Anh, V.4
  • 23
    • 79952279830 scopus 로고    scopus 로고
    • A novel implicit finite difference methods for the one dimensional fractional percolation equation
    • S. Chen, F. Liu, I. Turner, and V. Anh A novel implicit finite difference methods for the one dimensional fractional percolation equation Numer. Algorithms 56 2011 517 535
    • (2011) Numer. Algorithms , vol.56 , pp. 517-535
    • Chen, S.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 24
    • 67349231192 scopus 로고    scopus 로고
    • Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
    • F. Liu, C. Yang, and K. Burrage Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term J. Comput. Appl. Math. 231 2009 160 176
    • (2009) J. Comput. Appl. Math. , vol.231 , pp. 160-176
    • Liu, F.1    Yang, C.2    Burrage, K.3
  • 25
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
    • P. Zhuang, F. Liu, V. Anh, and I. Turner New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation SIAM J. Numer. Anal. 46 2 2008 1079 1095
    • (2008) SIAM J. Numer. Anal. , vol.46 , Issue.2 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 26
    • 84856227286 scopus 로고    scopus 로고
    • Modified alternating direction methods for solving a two-dimensional non-continuous seepage flow with fractional derivatives
    • Q. Liu, and F. Liu Modified alternating direction methods for solving a two-dimensional non-continuous seepage flow with fractional derivatives Math. Numer. Sin. (China) 31 2 2009 179 194
    • (2009) Math. Numer. Sin. (China) , vol.31 , Issue.2 , pp. 179-194
    • Liu, Q.1    Liu, F.2
  • 27
    • 31744438550 scopus 로고    scopus 로고
    • A second order accurate numerical approximation for the fractional diffusion equation
    • C. Tadjeran, H.P. Scheffler, and M.M. Meerschaert A second order accurate numerical approximation for the fractional diffusion equation J. Comput. Phys. 213 1 2006 205 213
    • (2006) J. Comput. Phys. , vol.213 , Issue.1 , pp. 205-213
    • Tadjeran, C.1    Scheffler, H.P.2    Meerschaert, M.M.3
  • 28
    • 84870061665 scopus 로고    scopus 로고
    • An implicit numerical method for the two-dimensional fractional percolation equation
    • S. Chen, F. Liu, I. Turner, and V. Anh An implicit numerical method for the two-dimensional fractional percolation equation Appl. Math. Comput. 219 2013 4322 4331
    • (2013) Appl. Math. Comput. , vol.219 , pp. 4322-4331
    • Chen, S.1    Liu, F.2    Turner, I.3    Anh, V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.