메뉴 건너뛰기




Volumn 219, Issue 9, 2013, Pages 4322-4331

An implicit numerical method for the two-dimensional fractional percolation equation

Author keywords

Consistency; Convergence; Fractional percolation equation; Implicit finite difference method; Stability

Indexed keywords

CONSISTENCY; CONVERGENCE; FRACTIONAL PERCOLATION EQUATION; IMPLICIT FINITE DIFFERENCE METHOD; IMPLICIT NUMERICAL METHOD; NUMERICAL EXAMPLE; NUMERICAL RESULTS; RIGID-BODY MOTION; STABILITY AND CONVERGENCE;

EID: 84870061665     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2012.10.003     Document Type: Article
Times cited : (55)

References (25)
  • 2
    • 51749116733 scopus 로고    scopus 로고
    • Finite difference approximations for the Fokker-Planck equation
    • S. Chen, F. Liu, P. Zhuang, and V. Anh Finite difference approximations for the Fokker-Planck equation Appl. Math. Model. 33 2009 256 273
    • (2009) Appl. Math. Model. , vol.33 , pp. 256-273
    • Chen, S.1    Liu, F.2    Zhuang, P.3    Anh, V.4
  • 3
    • 79952279830 scopus 로고    scopus 로고
    • A novel implicit finite difference methods for the one dimensional fractional percolation equation
    • S. Chen, F. Liu, I. Turner, and V. Anh A novel implicit finite difference methods for the one dimensional fractional percolation equation Numer. Algor. 56 2011 517 535
    • (2011) Numer. Algor. , vol.56 , pp. 517-535
    • Chen, S.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 6
    • 14644446063 scopus 로고    scopus 로고
    • Least squares finite element solution of a fractional order two-point boundary value problem
    • G.J. Fix, and J.P. Roop Least squares finite element solution of a fractional order two-point boundary value problem J. Comput. Math. Appl. 48 2004 1017 1033
    • (2004) J. Comput. Math. Appl. , vol.48 , pp. 1017-1033
    • Fix, G.J.1    Roop, J.P.2
  • 7
    • 0032307661 scopus 로고    scopus 로고
    • Approximate analytical solution for seepage flow with fractional derivatives in porous media
    • Ji-Huan He Approximate analytical solution for seepage flow with fractional derivatives in porous media Comput. Methods Appl. Mech. Eng. 167 1998 57 68
    • (1998) Comput. Methods Appl. Mech. Eng. , vol.167 , pp. 57-68
    • He, J.-H.1
  • 10
    • 1542425102 scopus 로고    scopus 로고
    • Numerical solution of space fractional Fokker-Planck equation
    • F. Liu, V. Anh, and I. Turner Numerical solution of space fractional Fokker-Planck equation J. Comput. Appl. Math. 166 2004 209 219
    • (2004) J. Comput. Appl. Math. , vol.166 , pp. 209-219
    • Liu, F.1    Anh, V.2    Turner, I.3
  • 11
    • 34547673244 scopus 로고    scopus 로고
    • Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation
    • F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation Appl. Math. Comput. 191 2007 12 21
    • (2007) Appl. Math. Comput. , vol.191 , pp. 12-21
    • Liu, F.1    Zhuang, P.2    Anh, V.3    Turner, I.4    Burrage, K.5
  • 12
    • 84856227286 scopus 로고    scopus 로고
    • Modified alternating direction methods for solving a two-dimensional non-continuous seepage flow with fractional derivatives
    • Q. Liu, and F. Liu Modified alternating direction methods for solving a two-dimensional non-continuous seepage flow with fractional derivatives Math. Numer. Sin. (China) 31 2 2009 179 194
    • (2009) Math. Numer. Sin. (China) , vol.31 , Issue.2 , pp. 179-194
    • Liu, Q.1    Liu, F.2
  • 13
    • 67349231192 scopus 로고    scopus 로고
    • Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
    • F. Liu, C. Yang, and K. Burrage Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term J. Comput. Appl. Math. 231 2009 160 176
    • (2009) J. Comput. Appl. Math. , vol.231 , pp. 160-176
    • Liu, F.1    Yang, C.2    Burrage, K.3
  • 14
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection-dispersion flow equations
    • M.M. Meerschaert, and C. Tadjeran Finite difference approximations for fractional advection-dispersion flow equations J. Comput. Appl. Math. 172 2004 65 77
    • (2004) J. Comput. Appl. Math. , vol.172 , pp. 65-77
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 15
    • 28044468843 scopus 로고    scopus 로고
    • Finite difference approximations for two-sided space-fractional partial differential equations
    • M.M. Meerschaert, and C. Tadjeran Finite difference approximations for two-sided space-fractional partial differential equations J. Appl. Numer. Math. 56 2006 80 90
    • (2006) J. Appl. Numer. Math. , vol.56 , pp. 80-90
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 16
    • 25444463578 scopus 로고    scopus 로고
    • Finite difference methods for two-dimensional fractional dispersion equation
    • M. Meerschaert, H.P. Scheffler, and C. Tadjeran Finite difference methods for two-dimensional fractional dispersion equation J. Comput. Phys 211 2006 249 261
    • (2006) J. Comput. Phys , vol.211 , pp. 249-261
    • Meerschaert, M.1    Scheffler, H.P.2    Tadjeran, C.3
  • 18
    • 33744981446 scopus 로고    scopus 로고
    • Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method
    • S. Momani, and Z. Odibat Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method Appl. Math. Comput. 177 2006 488 494
    • (2006) Appl. Math. Comput. , vol.177 , pp. 488-494
    • Momani, S.1    Odibat, Z.2
  • 21
    • 63649101659 scopus 로고    scopus 로고
    • Seepage flow and consolidation in a deforming porous medium
    • N. Petford, and M.A. Koenders Seepage flow and consolidation in a deforming porous medium Geophys. Res. Abstracts 5 2003 13329
    • (2003) Geophys. Res. Abstracts , vol.5 , pp. 13329
    • Petford, N.1    Koenders, M.A.2
  • 24
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
    • P. Zhuang, F. Liu, V. Anh, and I. Turner New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation SIAM J. Numer. Anal. 46 2 2008 1079 1095
    • (2008) SIAM J. Numer. Anal. , vol.46 , Issue.2 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 25
    • 84907893973 scopus 로고    scopus 로고
    • Numerical methods for the variable-order fractional advection-diffusion with a nonlinear source term
    • P. Zhuang, F. Liu, V. Anh, and I. Turner Numerical methods for the variable-order fractional advection-diffusion with a nonlinear source term SIAM J. Numer. Anal. 47 3 2009 1760 1781
    • (2009) SIAM J. Numer. Anal. , vol.47 , Issue.3 , pp. 1760-1781
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.