메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 209-216

Theoretical considerations of potential-based reward shaping for multi-agent systems

Author keywords

Multiagent learning; Reinforcement learning; Reward shaping; Reward structures for learning

Indexed keywords

AUTONOMOUS AGENTS; REINFORCEMENT LEARNING; VECTOR QUANTIZATION;

EID: 84899455116     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (120)

References (35)
  • 4
    • 84880690163 scopus 로고    scopus 로고
    • Sequential optimality and coordination in multiagent systems
    • Citeseer
    • C. Boutilier. Sequential optimality and coordination in multiagent systems. In International Joint Conference on Artificial Intelligence, volume 16, pages 478-485. Citeseer, 1999.
    • (1999) International Joint Conference on Artificial Intelligence , vol.16 , pp. 478-485
    • Boutilier, C.1
  • 12
    • 0036932299 scopus 로고    scopus 로고
    • Reinforcement learning of coordination in cooperative multi-agent systems
    • Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press
    • S. Kapetanakis and D. Kudenko. Reinforcement learning of coordination in cooperative multi-agent systems. In Proceedings of the National Conference on Artificial Intelligence, pages 326-331. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999-2002.
    • (1999) Proceedings of the National Conference on Artificial Intelligence , pp. 326-331
    • Kapetanakis, S.1    Kudenko, D.2
  • 16
    • 34547964974 scopus 로고    scopus 로고
    • Automatic shaping and decomposition of reward functions
    • ACM
    • B. Marthi. Automatic shaping and decomposition of reward functions. In Proceedings of the 24th International Conference on Machine learning, page 608. ACM, 2007.
    • (2007) th International Conference on Machine Learning , pp. 608
    • Marthi, B.1
  • 17
    • 0030647149 scopus 로고    scopus 로고
    • Reinforcement learning in the multi-robot domain
    • M. Mataric. Reinforcement learning in the multi-robot domain. Autonomous Robots, 4(1):73-83, 1997.
    • (1997) Autonomous Robots , vol.4 , Issue.1 , pp. 73-83
    • Mataric, M.1
  • 19
    • 0001730497 scopus 로고
    • Non-cooperative games
    • J. Nash. Non-cooperative games. Annals of mathematics, 54(2):286-295, 1951.
    • (1951) Annals of Mathematics , vol.54 , Issue.2 , pp. 286-295
    • Nash, J.1
  • 20
    • 0141596576 scopus 로고    scopus 로고
    • Policy invariance under reward transformations: Theory and application to reward shaping
    • A. Y. Ng, D. Harada, and S. J. Russell. Policy invariance under reward transformations: Theory and application to reward shaping. In Proceedings of the 16th International Conference on Machine Learning, pages 278-287, 1999.
    • (1999) thInternational Conference on Machine Learning , pp. 278-287
    • Ng, A.Y.1    Harada, D.2    Russell, S.J.3
  • 23
    • 1642401055 scopus 로고    scopus 로고
    • Learning to drive a bicycle using reinforcement learning and shaping
    • J. Randlpv and P. Alstrom. Learning to drive a bicycle using reinforcement learning and shaping. In Proceedings of the 15th International Conference on Machine Learning, pages 463-471, 1998.
    • (1998) th International Conference on Machine Learning , pp. 463-471
    • Randlpv, J.1    Alstrom, P.2
  • 24
    • 34147161536 scopus 로고    scopus 로고
    • If multi-agent learning is the answer, what is the question?
    • Y. Shoham, R. Powers, and T. Grenager. If multi-agent learning is the answer, what is the question? Artificial Intelligence, 171(7):365-377, 2007.
    • (2007) Artificial Intelligence , vol.171 , Issue.7 , pp. 365-377
    • Shoham, Y.1    Powers, R.2    Grenager, T.3
  • 26
    • 85156221438 scopus 로고    scopus 로고
    • Generalization in reinforcement learning: Successful examples using sparse coarse coding
    • R. Sutton. Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding. Advances in Neural Information Processing Systems, pages 1038-1044, 1996.
    • (1996) Advances in Neural Information Processing Systems , pp. 1038-1044
    • Sutton, R.1
  • 30
    • 70349592320 scopus 로고    scopus 로고
    • Learning from actions not taken in multi agent systems
    • K. Turner and N. Khani. Learning from actions not taken in multiagent systems. Advances in Complex Systems (ACS), 12(04):455-473, 2009.
    • (2009) Advances in Complex Systems (ACS) , vol.12 , Issue.4 , pp. 455-473
    • Turner, K.1    Khani, N.2
  • 31
    • 27744448185 scopus 로고    scopus 로고
    • Reinforcement learning to play an optimal nash equilibrium in team Markov games
    • X. Wang and T. Sandholm. Reinforcement learning to play an optimal Nash equilibrium in team Markov games. Advances in neural information processing systems, pages 1603-1610, 2003.
    • (2003) Advances in Neural Information Processing Systems , pp. 1603-1610
    • Wang, X.1    Sandholm, T.2
  • 32
    • 0032207451 scopus 로고    scopus 로고
    • Conjectural equilibrium in multiagent learning
    • M. Wellman and J. Hu. Conjectural equilibrium in multiagent learning. Machine Learning, 33(2):179-200, 1998.
    • (1998) Machine Learning , vol.33 , Issue.2 , pp. 179-200
    • Wellman, M.1    Hu, J.2
  • 33
    • 27344453198 scopus 로고    scopus 로고
    • Potential-based shaping and Q-value initialization are equivalent
    • E. Wiewiora. Potential-based shaping and Q-value initialization are equivalent. Journal of Artificial Intelligence Research, 19(1):205-208, 2003.
    • (2003) Journal of Artificial Intelligence Research , vol.19 , Issue.1 , pp. 205-208
    • Wiewiora, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.