-
2
-
-
0003587784
-
Residual Q-learning applied to visual attention
-
Bari, Italy
-
Cesar Bandera, Francisco J. Vico, Jose M. Bravo, Mance E. Harmon, and Leemon C. Baird. Residual Q-learning applied to visual attention. In Thirteenth International Conference on Machine Learning, pages 20-27, Bari, Italy, 1996.
-
(1996)
Thirteenth International Conference on Machine Learning
, pp. 20-27
-
-
Bandera, C.1
Vico, F.J.2
Bravo, J.M.3
Harmon, M.E.4
Baird, L.C.5
-
5
-
-
0003091684
-
Convergence problems of general-sum multiagent reinforcement learning
-
Stanford
-
Michael Bowling. Convergence problems of general-sum multiagent reinforcement learning. In Seventeenth International Conference on Machine Learning, pages 89-94, Stanford, 2000.
-
(2000)
Seventeenth International Conference on Machine Learning
, pp. 89-94
-
-
Bowling, M.1
-
6
-
-
0036531878
-
Multiagent learning using a variable learning rate
-
Michael Bowling and Manuela Veloso. Multiagent learning using a variable learning rate. Artificial Intelligence, 136:215-250, 2002.
-
(2002)
Artificial Intelligence
, vol.136
, pp. 215-250
-
-
Bowling, M.1
Veloso, M.2
-
7
-
-
0034247018
-
A near-optimal polynomial time algorithm for learning in certain classes of stochastic games
-
Ronen I. Brafman and Moshe Tennenholtz. A near-optimal polynomial time algorithm for learning in certain classes of stochastic games. Artificial Intelligence, 121(1-2):31-47, 2000.
-
(2000)
Artificial Intelligence
, vol.121
, Issue.1-2
, pp. 31-47
-
-
Brafman, R.I.1
Tennenholtz, M.2
-
10
-
-
0031630561
-
The dynamics of reinforcement learning in cooperative multiagent systems
-
Madison, WI
-
Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative multiagent systems. In Fifteenth National Conference on Artificial Intelligence, pages 746-752, Madison, WI, 1998.
-
(1998)
Fifteenth National Conference on Artificial Intelligence
, pp. 746-752
-
-
Claus, C.1
Boutilier, C.2
-
20
-
-
0000929496
-
Multiagent reinforcement learning: Theoretical framework and an algorithm
-
Madison, WI
-
Junling Hu and Michael P. Wellman. Multiagent reinforcement learning: Theoretical framework and an algorithm. In Fifteenth International Conference on Machine Learning, pages 242-250, Madison, WI, 1998.
-
(1998)
Fifteenth International Conference on Machine Learning
, pp. 242-250
-
-
Hu, J.1
Wellman, M.P.2
-
27
-
-
85149834820
-
Markov games as a framework for multi-agent reinforcement learning
-
New Brunswick
-
Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. In Eleventh International Conference on Machine Learning, pages 157-163. New Brunswick, 1994.
-
(1994)
Eleventh International Conference on Machine Learning
, pp. 157-163
-
-
Littman, M.L.1
-
29
-
-
0001547175
-
Value-function reinforcement learning in Markov games
-
Michael L. Littman. Value-function reinforcement learning in Markov games. Cognitive Systems Research, 2:55-66, 2001b.
-
(2001)
Cognitive Systems Research
, vol.2
, pp. 55-66
-
-
Littman, M.L.1
-
32
-
-
0032679082
-
Exploration of multi-state environments: Local measures and back-propagation of uncertainty
-
Nicolas Meuleau and Paul Bourgine. Exploration of multi-state environments: Local measures and back-propagation of uncertainty. Machine Learning, 35(2): 117-154, 1999.
-
(1999)
Machine Learning
, vol.35
, Issue.2
, pp. 117-154
-
-
Meuleau, N.1
Bourgine, P.2
-
34
-
-
0001730497
-
Non-cooperative games
-
John F. Nash. Non-cooperative games. Annals of Mathematics, 54:286-295, 1951.
-
(1951)
Annals of Mathematics
, vol.54
, pp. 286-295
-
-
Nash, J.F.1
-
37
-
-
0000955979
-
Incremental multi-step Q-learning
-
Jing Peng and Ronald Williams. Incremental multi-step Q-learning. Machine Learning, 22:283-290, 1996.
-
(1996)
Machine Learning
, vol.22
, pp. 283-290
-
-
Peng, J.1
Williams, R.2
-
40
-
-
4544279348
-
Multi-agent reinforcement learning: A critical survey
-
Stanford University
-
Yoav Shoham, Rob Powers, and Trond Grenager. Multi-agent reinforcement learning: A critical survey. Technical report, Stanford University, 2003.
-
(2003)
Technical Report
-
-
Shoham, Y.1
Powers, R.2
Grenager, T.3
-
41
-
-
84898972974
-
Reinforcement learning for dynamic channel allocation in cellular telephone systems
-
MIT Press
-
Satinder Singh and Dimitri Bertsekas. Reinforcement learning for dynamic channel allocation in cellular telephone systems. In Advances in Neural Information Processing Systems, volume 9, pages 974-980. MIT Press, 1996.
-
(1996)
Advances in Neural Information Processing Systems
, vol.9
, pp. 974-980
-
-
Singh, S.1
Bertsekas, D.2
-
42
-
-
0033901602
-
Convergence results for single-step on-policy reinforcement learning algorithms
-
Satinder Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvári. Convergence results for single-step on-policy reinforcement learning algorithms. Machine Learning, 38(3):287-308, 2000.
-
(2000)
Machine Learning
, vol.38
, Issue.3
, pp. 287-308
-
-
Singh, S.1
Jaakkola, T.2
Littman, M.L.3
Szepesvári, C.4
-
44
-
-
0013528313
-
Scaling reinforcement learning toward RoboCup soccer
-
Morgan Kaufmann, San Francisco, CA
-
Peter Stone and Richard S. Sutton. Scaling reinforcement learning toward RoboCup soccer. In Proc. 18th International Conf. on Machine Learning, pages 537-544. Morgan Kaufmann, San Francisco, CA, 2001.
-
(2001)
Proc. 18th International Conf. on Machine Learning
, pp. 537-544
-
-
Stone, P.1
Sutton, R.S.2
-
47
-
-
0033570798
-
A unified analysis of value-function-based reinforcement-learning algorithms
-
Csaba Szepesvári and Michael L. Littman. A unified analysis of value-function-based reinforcement-learning algorithms. Neural Computation, 11:8:2017-2059, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.8
, pp. 2017-2059
-
-
Szepesvári, C.1
Littman, M.L.2
-
48
-
-
85152198941
-
Multi-agent reinforcement learning: Independent vs. cooperative agents
-
Amherst, MA
-
Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Tenth International Conference on Machine Learning, pages 330-337, Amherst, MA, 1993.
-
(1993)
Tenth International Conference on Machine Learning
, pp. 330-337
-
-
Tan, M.1
-
50
-
-
14344279109
-
An application of reinforcement learning to dialogue strategy selection in a spoken dialogue system for email
-
Marilyn A. Walker. An application of reinforcement learning to dialogue strategy selection in a spoken dialogue system for email. Journal of Artificial Intelligence Research, 12:387-416, 2000.
-
(2000)
Journal of Artificial Intelligence Research
, vol.12
, pp. 387-416
-
-
Walker, M.A.1
-
53
-
-
0032207451
-
Conjectural equilibrium in multiagent learning
-
Michael P. Wellman and Junling Hu. Conjectural equilibrium in multiagent learning. Machine Learning, 33:179-200, 1998.
-
(1998)
Machine Learning
, vol.33
, pp. 179-200
-
-
Wellman, M.P.1
Hu, J.2
|