메뉴 건너뛰기




Volumn 2, Issue , 2008, Pages 604-609

Potential-based shaping in model-based reinforcement learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIONICS; LEARNING SYSTEMS; REINFORCEMENT;

EID: 57749177069     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (77)

References (12)
  • 1
    • 0029210635 scopus 로고
    • Learning to act using real-time dynamic programming
    • Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learning to act using real-time dynamic programming. Artificial Intelligence 72(1):81-138.
    • (1995) Artificial Intelligence , vol.72 , Issue.1 , pp. 81-138
    • Barto, A.G.1    Bradtke, S.J.2    Singh, S.P.3
  • 2
    • 0041965975 scopus 로고    scopus 로고
    • R-MAX-a general polynomial time algorithm for near-optimal reinforcement learning
    • Brafman, R. I., and Tennenholtz, M. 2002. R-MAX-a general polynomial time algorithm for near-optimal reinforcement learning. Journal of Machine Learning Research 3:213-231.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 213-231
    • Brafman, R.I.1    Tennenholtz, M.2
  • 5
    • 23244466805 scopus 로고    scopus 로고
    • Ph.D. Dissertation, Gatsby Computational Neuroscience Unit, University College London
    • Kakade, S. M. 2003. On the Sample Complexity of Reinforcement Learning. Ph.D. Dissertation, Gatsby Computational Neuroscience Unit, University College London.
    • (2003) On the Sample Complexity of Reinforcement Learning
    • Kakade, S.M.1
  • 12
    • 27344453198 scopus 로고    scopus 로고
    • Potential-based shaping and Q-value initialization are equivalent
    • Wiewiora, E. 2003. Potential-based shaping and Q-value initialization are equivalent. Journal of Artificial Intelligence Research 19:205-208.
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 205-208
    • Wiewiora, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.