메뉴 건너뛰기




Volumn 12, Issue 4-5, 2009, Pages 455-473

Learning from actions not taken in multiagent systems

Author keywords

Counterfactual reward; Difference reward; Multiagent learning

Indexed keywords


EID: 70349592320     PISSN: 02195259     EISSN: None     Source Type: Journal    
DOI: 10.1142/s0219525909002301     Document Type: Article
Times cited : (11)

References (45)
  • 1
    • 33646001120 scopus 로고    scopus 로고
    • Handling communication restrictions and team formation in congestion games
    • Agogino, A. K. and Tumer, K., Handling communication restrictions and team formation in congestion games, J. Auton. Agents Multi Agent Syst. 13 (2006) 97-115.
    • (2006) J. Auton. Agents Multi Agent Syst. , vol.13 , pp. 97-115
    • Agogino, A.K.1    Tumer, K.2
  • 2
    • 51649111408 scopus 로고    scopus 로고
    • Analyzing and visualizing multiagent rewards in dynamic and stochastic environments
    • Agogino, A. K. and Tumer, K., Analyzing and visualizing multiagent rewards in dynamic and stochastic environments, J. Auton. Agents Multi Agent Syst. 17 (2008) 320-338.
    • (2008) J. Auton. Agents Multi Agent Syst. , vol.17 , pp. 320-338
    • Agogino, A.K.1    Tumer, K.2
  • 3
    • 47749108686 scopus 로고    scopus 로고
    • Efficient evaluation functions for evolving coordination
    • Agogino, A. K. and Tumer, K., Efficient evaluation functions for evolving coordination, Evol. Comput. 16 (2008) 257-288.
    • (2008) Evol. Comput. , vol.16 , pp. 257-288
    • Agogino, A.K.1    Tumer, K.2
  • 4
    • 84962053074 scopus 로고    scopus 로고
    • Multi-agent reinforcement learning for planning and scheduling multiple goals
    • Arai, S., Sycara, K. and Payne, T., Multi-agent reinforcement learning for planning and scheduling multiple goals, in Proc. Fourth Int. Conf. on Multiagent Syst. (2000), pp. 359-360.
    • (2000) Proc. Fourth Int. Conf. on Multiagent Syst. , pp. 359-360
    • Arai, S.1    Sycara, K.2    Payne, T.3
  • 5
    • 0002135590 scopus 로고
    • Complexity in economic theory: Inductive reasoning and bounded rationality
    • Arthur, W. B., Complexity in economic theory: Inductive reasoning and bounded rationality, Am. Econ. Rev. 84 (1994) 406-411.
    • (1994) Am. Econ. Rev. , vol.84 , pp. 406-411
    • Arthur, W.B.1
  • 7
    • 0032138856 scopus 로고    scopus 로고
    • On the minority game: Analytical and numerical studies
    • Challet, D. and Zhang, Y. C., On the minority game: Analytical and numerical studies, Physica A 256 (1998) 514.
    • (1998) Physica A , vol.256 , pp. 514
    • Challet, D.1    Zhang, Y.C.2
  • 9
    • 0002825556 scopus 로고    scopus 로고
    • Competition, efficiency and collective behavior in the "el Farol" bar model
    • de Cara, M. A. R., Pla, O. and Guinea, F., Competition, efficiency and collective behavior in the "El Farol" bar model, Eur. Phys. J. B 10 (1999) 187.
    • (1999) Eur. Phys. J. , vol.B10 , pp. 187
    • De Cara, M.A.R.1    Pla, O.2    Guinea, F.3
  • 10
    • 0002278788 scopus 로고    scopus 로고
    • Hierarchical reinforcement learning with the MAXQ value function decomposition
    • Dietterich, T. G., Hierarchical reinforcement learning with the MAXQ value function decomposition, J. Artif. Intell. 13 (2000) 227-303.
    • (2000) J. Artif. Intell. , vol.13 , pp. 227-303
    • Dietterich, T.G.1
  • 12
    • 0000929496 scopus 로고    scopus 로고
    • Multiagent reinforcement learning: Theoretical framework and an algorithm
    • Hu, J. andWellman, M. P., Multiagent reinforcement learning: Theoretical framework and an algorithm, in Proc. Fifteenth Int. Conf. on Machine Learning (1998), pp. 242- 250.
    • (1998) Proc. Fifteenth Int. Conf. on Machine Learning , pp. 242-250
    • Hu, J.1    Wellman, M.P.2
  • 13
    • 0031706903 scopus 로고    scopus 로고
    • Online learning about other agents in a dynamic multiagent system, in Proc.
    • Hu, J. and Wellman, M. P., Online learning about other agents in a dynamic multiagent system, in Proc. Second Int. Conf. on Autonomous Agents (1998), pp. 239-246.
    • (1998) Second Int. Conf. on Autonomous Agents , pp. 239-246
    • Hu, J.1    Wellman, M.P.2
  • 14
    • 41349093315 scopus 로고    scopus 로고
    • Deterministic dynamics in the minority game
    • Jefferies, P., Hart, M. L. and Johnson, N. F., Deterministic dynamics in the minority game, Phys. Rev. E 65(016105) (2002).
    • (2002) Phys. Rev. e , vol.65 , pp. 016105
    • Jefferies, P.1    Hart, M.L.2    Johnson, N.F.3
  • 17
    • 70349594910 scopus 로고    scopus 로고
    • Fast multiagent learning: Cashing in on team knowledge
    • ASME, St. Louis
    • Khani, N. and Tumer, K., Fast multiagent learning: Cashing in on team knowledge, in Artificial Neural Networks in Engineering (ASME, St. Louis, 2008), pp. 3-10.
    • (2008) Artificial Neural Networks in Engineering , pp. 3-10
    • Khani, N.1    Tumer, K.2
  • 19
    • 0002218603 scopus 로고    scopus 로고
    • Coordination and learning in multi-robot systems
    • Mataric, M. J., Coordination and learning in multi-robot systems, in IEEE Intelligent Systems (1998), pp. 6-8.
    • (1998) IEEE Intelligent Systems , pp. 6-8
    • Mataric, M.J.1
  • 20
    • 70349595296 scopus 로고    scopus 로고
    • Learning to cooperate in multi-agent systems by combining Q-learning and evolutionary strategy
    • McGlohon, M. and Sen, S., Learning to cooperate in multi-agent systems by combining Q-learning and evolutionary strategy, Int. J. Lateral Comput. 1 (2005) 58-64.
    • (2005) Int. J. Lateral Comput. , vol.1 , pp. 58-64
    • McGlohon, M.1    Sen, S.2
  • 22
    • 41549123971 scopus 로고    scopus 로고
    • Theoretical advantages of lenient learners: An evolutionary game theoretic perspective
    • Panait, L., Tuyls, K. and Luke, S., Theoretical advantages of lenient learners: An evolutionary game theoretic perspective, J. Mach. Learn. Res. 9 (2008) 423-457.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 423-457
    • Panait, L.1    Tuyls, K.2    Luke, S.3
  • 24
    • 1142292938 scopus 로고    scopus 로고
    • The communicative multiagent team decision problem: Analyzing teamwork theories and models
    • Pynadath, D. and Tambe, M., The communicative multiagent team decision problem: Analyzing teamwork theories and models, J. Artif. Intell. Res. 16 (2002) 389-423.
    • (2002) J. Artif. Intell. Res. , vol.16 , pp. 389-423
    • Pynadath, D.1    Tambe, M.2
  • 27
    • 27544506565 scopus 로고    scopus 로고
    • Reinforcement learning for RoboCupsoccer keepaway
    • Stone, P., Sutton, R. S. and Kuhlmann, G., Reinforcement learning for RoboCupsoccer keepaway, Adapt. Behav. (2005).
    • (2005) Adapt. Behav.
    • Stone, P.1    Sutton, R.S.2    Kuhlmann, G.3
  • 29
    • 0001936250 scopus 로고    scopus 로고
    • Towards flexible teamwork
    • Tambe, M., Towards flexible teamwork, J. Artif. Intell. Res. 7 (1997) 83-124.
    • (1997) J. Artif. Intell. Res. , vol.7 , pp. 83-124
    • Tambe, M.1
  • 30
    • 33750259111 scopus 로고    scopus 로고
    • Comparing evolutionary and temporal difference methods for reinforcement learning
    • Seattle, WA
    • Taylor, M. E., Whiteson, S. and Stone, P., Comparing evolutionary and temporal difference methods for reinforcement learning, in Proc. Genetic and Evolutionary Computation Conf. (Seattle, WA, 2006), pp. 1321-1328.
    • (2006) Proc. Genetic and Evolutionary Computation Conf. , pp. 1321-1328
    • Taylor, M.E.1    Whiteson, S.2    Stone, P.3
  • 31
    • 2542485629 scopus 로고
    • Practical issues in temporal difference learning
    • eds. Moody, J., Hanson, S. and Lippmann, R. Morgan Kaufmann
    • Tesauro, G., Practical issues in temporal difference learning, in Advances in Neural Information Processing Systems, Vol.4, eds. Moody, J., Hanson, S. and Lippmann, R. (Morgan Kaufmann, 1992), pp. 259-266.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 259-266
    • Tesauro, G.1
  • 37
    • 34249064148 scopus 로고    scopus 로고
    • What evolutionary game theory tells us about multiagent learning
    • Tuyls, K. and Parsons, S., What evolutionary game theory tells us about multiagent learning, Artif. Intell. 171 (2007) 406-416.
    • (2007) Artif. Intell. , vol.171 , pp. 406-416
    • Tuyls, K.1    Parsons, S.2
  • 41
    • 84962044659 scopus 로고    scopus 로고
    • The moving target function problem in multi-agent learning
    • AAAI/MIT press
    • Vidal, J. M. and Durfee, E. H., The moving target function problem in multi-agent learning, in Proc. Third Int. Conf. on Multi-Agent Systems (AAAI/MIT press, 1998), pp. 317-324.
    • (1998) Proc. Third Int. Conf. on Multi-Agent Systems , pp. 317-324
    • Vidal, J.M.1    Durfee, E.H.2
  • 43
    • 0348156830 scopus 로고    scopus 로고
    • Trading agents competing: Performance, progress, and market effectiveness
    • Wellman, M. P., Cheng, S.-F., Reeves, D. M. and Lochne, K. M., Trading agents competing: Performance, progress, and market effectiveness, IEEE Intell. Syst. 18 (2003) 48-53.
    • (2003) IEEE Intell. Syst. , vol.18 , pp. 48-53
    • Wellman, M.P.1    Cheng, S.-F.2    Reeves, D.M.3    Lochne, K.M.4
  • 44
    • 33847264400 scopus 로고    scopus 로고
    • Empirical studies in action selection for reinforcement learning
    • Whiteson, S., Taylor, M. E. and Stone, P., Empirical studies in action selection for reinforcement learning, Adapt. Behav. 15 (2007).
    • (2007) Adapt. Behav. , vol.15
    • Whiteson, S.1    Taylor, M.E.2    Stone, P.3
  • 45
    • 0001309161 scopus 로고    scopus 로고
    • Optimal reward functions for members of collectives
    • Wolpert, D. H. and Tumer, K., Optimal reward functions for members of collectives, Adv. Complex Syst. 4 (2001) 265-279.
    • (2001) Adv. Complex Syst. , vol.4 , pp. 265-279
    • Wolpert, D.H.1    Tumer, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.