메뉴 건너뛰기




Volumn 21, Issue 1, 2012, Pages 2-17

Gaussian variational approximate inference for generalized linear mixed models

Author keywords

Best prediction; Likelihood based inference; Longitudinal data analysis; Machine learning; Variance components

Indexed keywords


EID: 84859847512     PISSN: 10618600     EISSN: None     Source Type: Journal    
DOI: 10.1198/jcgs.2011.09118     Document Type: Article
Times cited : (88)

References (42)
  • 2
    • 84898931951 scopus 로고    scopus 로고
    • Ensemble Learning for Multi-Layer Networks
    • eds. M. I. Jordan, K. J. Kearns, and S. A. Solla, Cambridge, MA: MIT Press, [4]
    • Barber, D., and Bishop, C. M. (1998), "Ensemble Learning for Multi-Layer Networks," in Advances in Neural Information Processing Systems, eds. M. I. Jordan, K. J. Kearns, and S. A. Solla, Vol. 10, Cambridge, MA: MIT Press, pp. 395-401.[4]
    • (1998) Advances In Neural Information Processing Systems , vol.10 , pp. 395-401
    • Barber, D.1    Bishop, C.M.2
  • 3
    • 34848812223 scopus 로고    scopus 로고
    • Lme4 0.999375. Linear Mixed-Effects Models Using S4 Classes
    • R package, available at, [10]
    • Bates, D., and Maechler, M. (2009), "lme4 0.999375. Linear Mixed-Effects Models Using S4 Classes," R package, available at http://cran.r-project.org.[10]
    • (2009)
    • Bates, D.1    Maechler, M.2
  • 7
    • 0031946068 scopus 로고    scopus 로고
    • Twelve Weeks of Continuous Oral Therapy for Toenail Onychomycosis Caused by Dermatophytes: A Double-Blind Comparative Trial of Terbinafine 250 mg/Day versus Itraconazole 200 mg/Day
    • [10,14]
    • De Backer, M., De Vroey, C., Lesaffre, E., Scheys, I., and De Keyser, P. (1998), "Twelve Weeks of Continuous Oral Therapy for Toenail Onychomycosis Caused by Dermatophytes: A Double-Blind Comparative Trial of Terbinafine 250 mg/Day versus Itraconazole 200 mg/Day," Journal of the American Academy of Dermatology, 38 (5), S57-S63.[10,14]
    • (1998) Journal of the American Academy of Dermatology , vol.38 , Issue.5
    • de Backer, M.1    de Vroey, C.2    Lesaffre, E.3    Scheys, I.4    de Keyser, P.5
  • 9
    • 78650402025 scopus 로고    scopus 로고
    • Theory of Gaussian Variational Approximation for a Poisson Linear Mixed Model
    • [3,9]
    • Hall, P., Ormerod, J. T., and Wand, M. P. (2011), "Theory of Gaussian Variational Approximation for a Poisson Linear Mixed Model," Statistica Sinica, 21, 369-389.[3,9]
    • (2011) Statistica Sinica , vol.21 , pp. 369-389
    • Hall, P.1    Ormerod, J.T.2    Wand, M.P.3
  • 10
    • 27844480834 scopus 로고    scopus 로고
    • Unsupervised Variational Bayesian Learning of Nonlinear Models
    • Cambridge, MA: MIT Press, [4]
    • Honkela, A., and Valpola, H. (2005), "Unsupervised Variational Bayesian Learning of Nonlinear Models," in Advances in Neural Information Processing Systems, Vol. 17, Cambridge, MA: MIT Press, pp. 593-600.[4]
    • (2005) Advances In Neural Information Processing Systems , vol.17 , pp. 593-600
    • Honkela, A.1    Valpola, H.2
  • 11
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian Parameter Estimation via Variational Methods
    • [4]
    • Jaakkola, T. S., and Jordan, M. I. (2000), "Bayesian Parameter Estimation via Variational Methods," Statistics and Computing, 10, 25-37.[4]
    • (2000) Statistics and Computing , vol.10 , pp. 25-37
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 12
    • 4043129651 scopus 로고    scopus 로고
    • Graphical Models
    • [3]
    • Jordan, M. I. (2004), "Graphical Models," Statistical Science, 19, 140-155.[3]
    • (2004) Statistical Science , vol.19 , pp. 140-155
    • Jordan, M.I.1
  • 13
    • 0033225865 scopus 로고    scopus 로고
    • An Introduction to Variational Methods for Graphical Models
    • [3]
    • Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999), "An Introduction to Variational Methods for Graphical Models," Machine Learning, 37, 183-233.[3]
    • (1999) Machine Learning , vol.37 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 15
    • 77958065020 scopus 로고    scopus 로고
    • Menzies School of Health Research 1999-2000 Annual Report
    • [5]
    • Leach, A. (2000), "Menzies School of Health Research 1999-2000 Annual Report," Menzies School of Health Research, pp. 18-21.[5]
    • (2000) Menzies School of Health Research , pp. 18-21
    • Leach, A.1
  • 17
    • 0035648391 scopus 로고    scopus 로고
    • On the Effect of the Number of Quadrature Points in a Logistic Random-Effects Model: An Example
    • [10,15]
    • Lesaffre, E., and Spiessens, B. (2001), "On the Effect of the Number of Quadrature Points in a Logistic Random-Effects Model: An Example," Applied Statistics, 50, 325-335.[10,15]
    • (2001) Applied Statistics , vol.50 , pp. 325-335
    • Lesaffre, E.1    Spiessens, B.2
  • 19
    • 0001303107 scopus 로고
    • A Note on Gauss-Hermite Quadrature
    • [7,10]
    • Liu, Q., and Pierce, D. A. (1994), "A Note on Gauss-Hermite Quadrature," Biometrika, 81, 624-629.[7,10]
    • (1994) Biometrika , vol.81 , pp. 624-629
    • Liu, Q.1    Pierce, D.A.2
  • 21
    • 0031479575 scopus 로고    scopus 로고
    • Maximum Likelihood for Algorithms for Generalized Linear Mixed Models
    • [10]
    • McCulloch, C. E. (1997), "Maximum Likelihood for Algorithms for Generalized Linear Mixed Models," Journal of the American Statistical Association, 92, 162-170.[10]
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 162-170
    • McCulloch, C.E.1
  • 23
    • 0002788893 scopus 로고    scopus 로고
    • A New View of the EM Algorithm That Justifies Incremental and Other Variants
    • ed. M. I. Jordan, Cambridge, MA: MIT Press, [7]
    • Neal, R. M., and Hinton, G. E. (1999), "A New View of the EM Algorithm That Justifies Incremental and Other Variants," in Learning in Graphical Models, ed. M. I. Jordan, Cambridge, MA: MIT Press, pp. 355-368.[7]
    • (1999) Learning In Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 24
    • 33947127673 scopus 로고    scopus 로고
    • REML Estimation for Binary Data in GLMMs
    • [10-12]
    • Noh, M., and Lee, Y. (2007), "REML Estimation for Binary Data in GLMMs," Journal of Multivariate Analysis, 98, 896-915.[10-12]
    • (2007) Journal of Multivariate Analysis , vol.98 , pp. 896-915
    • Noh, M.1    Lee, Y.2
  • 25
    • 63249135864 scopus 로고    scopus 로고
    • Variational Gaussian Approximation Revisited
    • [4,9]
    • Opper, M., and Archambeau, C. (2009), "Variational Gaussian Approximation Revisited," Neural Computation, 21, 786-792.[4,9]
    • (2009) Neural Computation , vol.21 , pp. 786-792
    • Opper, M.1    Archambeau, C.2
  • 26
    • 77953020972 scopus 로고    scopus 로고
    • On Semiparametric Regression and Data Mining
    • Ph.D. thesis, School of Mathematics and Statistics, The University of New South Wales, Sydney, Australia.[4,7]
    • Ormerod, J. T. (2008), "On Semiparametric Regression and Data Mining," Ph.D. thesis, School of Mathematics and Statistics, The University of New South Wales, Sydney, Australia.[4,7]
    • (2008)
    • Ormerod, J.T.1
  • 27
    • 77958050054 scopus 로고    scopus 로고
    • Variational Approximations for Logistic MixedModels
    • Department of Statistics, University of Isfahan, Isfahan, Iran, [4]
    • Ormerod, J. T., andWand, M. P. (2008), "Variational Approximations for Logistic MixedModels," in Proceedings of the Ninth Iranian Statistics Conference, Department of Statistics, University of Isfahan, Isfahan, Iran, pp. 450-467.[4]
    • (2008) Proceedings of the Ninth Iranian Statistics Conference , pp. 450-467
    • Ormerod, J.T.1    Andwand, M.P.2
  • 28
  • 30
    • 84946045727 scopus 로고
    • Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model
    • [10]
    • Pinheiro, J. C., and Bates, D. M. (1995), "Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model," Journal of Computational and Graphical Statistics, 4, 12-35.[10]
    • (1995) Journal of Computational and Graphical Statistics , vol.4 , pp. 12-35
    • Pinheiro, J.C.1    Bates, D.M.2
  • 31
    • 70149113077 scopus 로고    scopus 로고
    • R Development Core Team, Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. Available at, [10]
    • R Development Core Team (2009), R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. Available at www.R-project.org.[10]
    • (2009) R: A Language and Environment For Statistical Computing
  • 32
    • 77950035264 scopus 로고    scopus 로고
    • Maximum Likelihood for Generalized Linear Models With Nested Random Effects via High-Order, Multivariate Laplace Approximation
    • [3]
    • Raudenbush, S. W., Yang, M.-L., and Yosef, M. (2000), "Maximum Likelihood for Generalized Linear Models With Nested Random Effects via High-Order, Multivariate Laplace Approximation," Journal of Computational and Graphical Statistics, 9, 141-157.[3]
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , pp. 141-157
    • Raudenbush, S.W.1    Yang, M.-L.2    Yosef, M.3
  • 33
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations
    • [3,4]
    • Rue, H., Martino, S., and Chopin, N. (2009), "Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations," Journal of the Royal Statistical Society, Ser. B, 7, 319-392.[3,4]
    • (2009) Journal of the Royal Statistical Society, Ser. B , vol.7 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 34
    • 84898947199 scopus 로고    scopus 로고
    • Bayesian Model Selection for Support Vector Machines, Gaussian Processes and Other Kernel Classifiers
    • Cambridge,MA: MIT Press, [4]
    • Seeger, M. (2000), "Bayesian Model Selection for Support Vector Machines, Gaussian Processes and Other Kernel Classifiers," in Advances in Neural Information Processing Systems, Vol. 12, Cambridge,MA: MIT Press, pp. 603-609.[4]
    • (2000) Advances In Neural Information Processing Systems , vol.12 , pp. 603-609
    • Seeger, M.1
  • 36
    • 0025172155 scopus 로고
    • Some Covariance Models for Longitudinal Count DataWith Overdispersion
    • [10,13]
    • Thall, P. F., and Vail, S. C. (1990), "Some Covariance Models for Longitudinal Count DataWith Overdispersion," Biometrics, 46, 657-671.[10,13]
    • (1990) Biometrics , vol.46 , pp. 657-671
    • Thall, P.F.1    Vail, S.C.2
  • 37
    • 4043069967 scopus 로고    scopus 로고
    • Bayesian Methods for Neural Networks and Related Models
    • [7]
    • Titterington, D. M. (2004), "Bayesian Methods for Neural Networks and Related Models," Statistical Science, 19, 128-139.[7]
    • (2004) Statistical Science , vol.19 , pp. 128-139
    • Titterington, D.M.1
  • 38
    • 77958065863 scopus 로고    scopus 로고
    • VR 7.2. Functions and Datasets to Support Venables and Ripley 'Modern Applied Statistics With S' (4th Ed.)
    • R package, available at, [10]
    • Venables, W. N., and Ripley, B. D. (2009), "VR 7.2. Functions and Datasets to Support Venables and Ripley 'Modern Applied Statistics With S' (4th ed.)," R package, available at http://cran.r-project.org.[10]
    • (2009)
    • Venables, W.N.1    Ripley, B.D.2
  • 41
    • 0024205301 scopus 로고
    • Models for Longitudinal Data: A Generalized Estimating Equation Approach
    • [9]
    • Zeger, S. L., Liang, K. Y., and Albert, P. S. (1988), "Models for Longitudinal Data: A Generalized Estimating Equation Approach," Biometrics, 44, 1049-1060.[9]
    • (1988) Biometrics , vol.44 , pp. 1049-1060
    • Zeger, S.L.1    Liang, K.Y.2    Albert, P.S.3
  • 42
    • 33745929657 scopus 로고    scopus 로고
    • General Design Bayesian Generalized Linear Mixed Models
    • [3,6]
    • Zhao, Y., Staudenmayer, J., Coull, B. A., and Wand, M. P. (2006), "General Design Bayesian Generalized Linear Mixed Models," Statistical Science, 21, 35-51.[3,6]
    • (2006) Statistical Science , vol.21 , pp. 35-51
    • Zhao, Y.1    Staudenmayer, J.2    Coull, B.A.3    Wand, M.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.