메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Stochastic convex optimization with multiple objectives

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CONSTRAINED OPTIMIZATION; CONVEX OPTIMIZATION; GRADIENT METHODS; LAGRANGE MULTIPLIERS;

EID: 84898992535     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (55)

References (26)
  • 1
    • 80052756423 scopus 로고    scopus 로고
    • Solution approaches for the multiobjective stochastic programming
    • F. B. Abdelaziz. Solution approaches for the multiobjective stochastic programming. European Journal of Operational Research, 216(1):1-16, 2012.
    • (2012) European Journal of Operational Research , vol.216 , Issue.1 , pp. 1-16
    • Abdelaziz, F.B.1
  • 4
    • 85162480829 scopus 로고    scopus 로고
    • Non-asymptotic analysis of stochastic approximation algorithms for machine learning
    • F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In NIPS, pages 451-459, 2011.
    • (2011) NIPS , pp. 451-459
    • Bach, F.1    Moulines, E.2
  • 8
    • 2942596459 scopus 로고    scopus 로고
    • Stochastic approach versus multi-objective approach for obtaining efficient solutions in stochastic multiobjective programming problems
    • R. Caballero, E. Cerdá, M. del Mar Muñoz, and L. Rey. Stochastic approach versus multi-objective approach for obtaining efficient solutions in stochastic multiobjective programming problems. European Journal of Operational Research, 158(3):633-648, 2004.
    • (2004) European Journal of Operational Research , vol.158 , Issue.3 , pp. 633-648
    • Caballero, R.1    Cerdá, E.2    Del Mar Muñoz, M.3    Rey, L.4
  • 10
    • 84898471955 scopus 로고    scopus 로고
    • Beyond the regret minimization barrier: An optimal algorithm for stochastic strongly-convex optimization
    • E. Hazan and S. Kale. Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization. Journal of Machine Learning Research-Proceedings Track, 19:421-436, 2011.
    • (2011) Journal of Machine Learning Research-Proceedings Track , vol.19 , pp. 421-436
    • Hazan, E.1    Kale, S.2
  • 11
    • 84877787583 scopus 로고    scopus 로고
    • Multi-criteria anomaly detection using pareto depth analysis
    • K.-J. Hsiao, K. S. Xu, J. Calder, and A. O. Hu III. Multi-criteria anomaly detection using pareto depth analysis. In NIPS, pages 854-862, 2012.
    • (2012) NIPS , pp. 854-862
    • Hsiao, K.-J.1    Xu, K.S.2    Calder, J.3    Hu III, A.O.4
  • 12
  • 13
    • 84869152925 scopus 로고    scopus 로고
    • Trading regret for efficiency: Online convex optimization with long term constraints
    • M. Mahdavi, R. Jin, and T. Yang. Trading regret for efficiency: online convex optimization with long term constraints. JMLR, 13:2465-2490, 2012.
    • (2012) JMLR , vol.13 , pp. 2465-2490
    • Mahdavi, M.1    Jin, R.2    Yang, T.3
  • 15
    • 84995186518 scopus 로고
    • Portfolio selection
    • H. Markowitz. Portfolio selection. The journal of finance, 7(1):77-91, 1952.
    • (1952) The Journal of Finance , vol.7 , Issue.1 , pp. 77-91
    • Markowitz, H.1
  • 16
    • 70049091215 scopus 로고
    • Efficient methods in convex programming
    • A. Nemirovski. Efficient methods in convex programming. Lecture Notes, Available at http://www2.isye.gatech.edu/nemirovs, 1994.
    • (1994) Lecture Notes
    • Nemirovski, A.1
  • 17
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM J. on Optimization, 19:1574-1609, 2009.
    • (2009) SIAM J. on Optimization , vol.19 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 18
    • 84867120686 scopus 로고    scopus 로고
    • Making gradient descent optimal for strongly convex stochastic optimization
    • A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly convex stochastic optimization. In ICML, 2012.
    • (2012) ICML
    • Rakhlin, A.1    Shamir, O.2    Sridharan, K.3
  • 19
    • 80555154412 scopus 로고    scopus 로고
    • Neyman-pearson classification, convexity and stochastic constraints
    • P. Rigollet and X. Tong. Neyman-pearson classification, convexity and stochastic constraints. The Journal of Machine Learning Research, 12:2831-2855, 2011.
    • (2011) The Journal of Machine Learning Research , vol.12 , pp. 2831-2855
    • Rigollet, P.1    Tong, X.2
  • 22
    • 34547964973 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for svm
    • S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In ICML, pages 807-814, 2007.
    • (2007) ICML , pp. 807-814
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 24
    • 80052661691 scopus 로고    scopus 로고
    • Learning to rank with multiple objective functions
    • ACM
    • K. M. Svore, M. N. Volkovs, and C. J. Burges. Learning to rank with multiple objective functions. In WWW, pages 367-376. ACM, 2011.
    • (2011) WWW , pp. 367-376
    • Svore, K.M.1    Volkovs, M.N.2    Burges, C.J.3
  • 25
    • 38549128325 scopus 로고    scopus 로고
    • Convergence analysis of sample average approximation methods for a class of stochastic mathematical programs with equality constraints
    • H. Xu and F. Meng. Convergence analysis of sample average approximation methods for a class of stochastic mathematical programs with equality constraints. Mathematics of Operations Research, 32(3):648-668, 2007.
    • (2007) Mathematics of Operations Research , vol.32 , Issue.3 , pp. 648-668
    • Xu, H.1    Meng, F.2
  • 26
    • 1942484421 scopus 로고    scopus 로고
    • Online convex programming and generalized infinitesimal gradient ascent
    • M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In ICML, pages 928-936, 2003.
    • (2003) ICML , pp. 928-936
    • Zinkevich, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.