메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 2831-2855

Neyman-Pearson classification, convexity and stochastic constraints

Author keywords

Anomaly detection; Binary classification; Chance constrained optimization; Empirical constraint; Empirical risk minimization; Neyman Pearson paradigm

Indexed keywords

ANOMALY DETECTION; BINARY CLASSIFICATION; CHANCE-CONSTRAINED OPTIMIZATIONS; EMPIRICAL CONSTRAINT; EMPIRICAL RISK MINIMIZATION; NEYMAN-PEARSON PARADIGM;

EID: 80555154412     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (96)

References (23)
  • 2
    • 84884052304 scopus 로고    scopus 로고
    • Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ
    • A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2009.
    • (2009) Robust Optimization
    • Ben-Tal, A.1    El Ghaoui, L.2    Nemirovski, A.3
  • 4
    • 84924053271 scopus 로고    scopus 로고
    • Theory of classification: A survey of some recent advances
    • S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification: A survey of some recent advances. ESAIMProbab. Stat, 9:323-375, 2005.
    • (2005) ESAIMProbab. Stat , vol.9 , pp. 323-375
    • Boucheron, S.1    Bousquet, O.2    Lugosi, G.3
  • 6
    • 33646902948 scopus 로고    scopus 로고
    • The scenario approach to robust control design
    • DOI 10.1109/TAC.2006.875041
    • G. C. Calafiore and M. C. Campi. The scenario approach to robust control design. IEEE Trans. Automat. Control, 51(5):742-753, 2006. (Pubitemid 43792636)
    • (2006) IEEE Transactions on Automatic Control , vol.51 , Issue.5 , pp. 742-753
    • Calafiore, G.C.1    Campi, M.C.2
  • 9
    • 0038045155 scopus 로고    scopus 로고
    • Radial basis function neural networks for nonlinear Fisher discrimination and Neyman-Pearson classification
    • DOI 10.1016/S0893-6080(03)00086-8
    • D. Casasent and X. Chen. Radial basis function neural networks for nonlinear fisher discrimination and neyman-pearson classification. Neural Networks, 16(5-6):529-535, 2003. (Pubitemid 36794324)
    • (2003) Neural Networks , vol.16 , Issue.5-6 , pp. 529-535
    • Casasent, D.1    Chen, X.-W.2
  • 12
    • 48249090119 scopus 로고    scopus 로고
    • Analysis to Neyman-Pearson classification with convex loss function
    • M. Han, D. Chen, and Z. Sun. Analysis to Neyman-Pearson classification with convex loss function. Anal. Theory Appl, 24(1):18-28, 2008.
    • (2008) Anal. Theory Appl , vol.24 , Issue.1 , pp. 18-28
    • Han, M.1    Chen, D.2    Sun, Z.3
  • 14
    • 23844451412 scopus 로고    scopus 로고
    • Probabilistically constrained linear programs and risk-adjusted controller design
    • DOI 10.1137/S1052623403430099
    • C. M. Lagoa, X. Li, and M. Sznaier. Probabilistically constrained linear programs and risk-adjusted controller design. SIAM J. Optim., 15(3):938-951 (electronic), 2005. (Pubitemid 41156923)
    • (2005) SIAM Journal on Optimization , vol.15 , Issue.3 , pp. 938-951
    • Lagoa, C.M.1    Li, X.2    Sznaier, M.3
  • 16
    • 36248992411 scopus 로고    scopus 로고
    • Convex approximations of chance constrained programs
    • A. Nemirovski and A. Shapiro. Convex approximations of chance constrained programs. SIAM J. Optim., 17(4):969-996, 2006.
    • (2006) SIAM J. Optim. , vol.17 , Issue.4 , pp. 969-996
    • Nemirovski, A.1    Shapiro, A.2
  • 18
    • 0004267646 scopus 로고    scopus 로고
    • Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, Reprint of the 1970 original, Princeton Paperbacks
    • R. T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970 original, Princeton Paperbacks.
    • (1997) Convex Analysis
    • Rockafellar, R.T.1
  • 19
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. Schapire. The strength of weak learnability. Machine learning, 5(2):197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 21
    • 34547917144 scopus 로고    scopus 로고
    • Performance measures for Neyman-Pearson classification
    • DOI 10.1109/TIT.2007.901152
    • C. Scott. Performance measures for Neyman-Pearson classification. IEEE Trans. Inform. Theory, 53(8):2852-2863, 2007. (Pubitemid 47249851)
    • (2007) IEEE Transactions on Information Theory , vol.53 , Issue.8 , pp. 2852-2863
    • Scott, C.1
  • 22
    • 27744553952 scopus 로고    scopus 로고
    • A Neyman-Pearson approach to statistical learning
    • DOI 10.1109/TIT.2005.856955
    • C. Scott and R. Nowak. A Neyman-Pearson approach to statistical learning. IEEE Transactions on Information Theory, 51(11):3806-3819, 2005. (Pubitemid 41622582)
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.11 , pp. 3806-3819
    • Scott, C.1    Nowak, R.2
  • 23
    • 0010956944 scopus 로고
    • Distribution inequalities for the binomial law
    • E. V. Slud. Distribution inequalities for the binomial law. Ann. Probability, 5(3):404-412, 1977.
    • (1977) Ann. Probability , vol.5 , Issue.3 , pp. 404-412
    • Slud, E.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.