메뉴 건너뛰기




Volumn 78, Issue 5, 2012, Pages 1444-1459

A complete characterization of statistical query learning with applications to evolvability

Author keywords

Agnostic learning; Complexity of learning; Evolvability; Statistical query

Indexed keywords

EFFICIENCY; EVOLUTIONARY ALGORITHMS; LEARNING SYSTEMS;

EID: 84861597048     PISSN: 00220000     EISSN: 10902724     Source Type: Journal    
DOI: 10.1016/j.jcss.2011.12.024     Document Type: Conference Paper
Times cited : (41)

References (42)
  • 1
    • 0346398224 scopus 로고    scopus 로고
    • General bounds on statistical query learning and PAC learning with noise via hypothesis boosting
    • J. Aslam, and S. Decatur General bounds on statistical query learning and PAC learning with noise via hypothesis boosting Inform. and Comput. 141 2 1998 85 118
    • (1998) Inform. and Comput. , vol.141 , Issue.2 , pp. 85-118
    • Aslam, J.1    Decatur, S.2
  • 2
    • 0032047249 scopus 로고    scopus 로고
    • Specification and simulation of statistical query algorithms for efficiency and noise tolerance
    • J. Aslam, and S. Decatur Specification and simulation of statistical query algorithms for efficiency and noise tolerance J. Comput. System Sci. 56 1998 191 208
    • (1998) J. Comput. System Sci. , vol.56 , pp. 191-208
    • Aslam, J.1    Decatur, S.2
  • 5
    • 70349161954 scopus 로고    scopus 로고
    • The uniform hardcore lemma via approximate Bregman projections
    • B. Barak, M. Hardt, S. Kale, The uniform hardcore lemma via approximate Bregman projections, in: Proceedings of SODA, 2009, pp. 1193-1200.
    • (2009) Proceedings of SODA , pp. 1193-1200
    • Barak, B.1    Hardt, M.2    Kale, S.3
  • 8
    • 0001926474 scopus 로고    scopus 로고
    • A polynomial time algorithm for learning noisy linear threshold functions
    • A. Blum, A. Frieze, R. Kannan, and S. Vempala A polynomial time algorithm for learning noisy linear threshold functions Algorithmica 22 1/2 1997 35 52
    • (1997) Algorithmica , vol.22 , Issue.1-2 , pp. 35-52
    • Blum, A.1    Frieze, A.2    Kannan, R.3    Vempala, S.4
  • 9
    • 0028062299 scopus 로고
    • Weakly learning DNF and characterizing statistical query learning using Fourier analysis
    • A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, S. Rudich, Weakly learning DNF and characterizing statistical query learning using Fourier analysis, in: Proceedings of STOC, 1994, pp. 253-262.
    • (1994) Proceedings of STOC , pp. 253-262
    • Blum, A.1    Furst, M.2    Jackson, J.3    Kearns, M.4    Mansour, Y.5    Rudich, S.6
  • 10
    • 24144453496 scopus 로고    scopus 로고
    • Noise-tolerant learning, the parity problem, and the statistical query model
    • A. Blum, A. Kalai, and H. Wasserman Noise-tolerant learning, the parity problem, and the statistical query model J. ACM 50 4 2003 506 519
    • (2003) J. ACM , vol.50 , Issue.4 , pp. 506-519
    • Blum, A.1    Kalai, A.2    Wasserman, H.3
  • 11
    • 0037708179 scopus 로고    scopus 로고
    • On using extended statistical queries to avoid membership queries
    • N. Bshouty, and V. Feldman On using extended statistical queries to avoid membership queries J. Mach. Learn. Res. 2 2002 359 395
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 359-395
    • Bshouty, N.1    Feldman, V.2
  • 12
    • 0030197679 scopus 로고    scopus 로고
    • On the Fourier spectrum of monotone functions
    • N. Bshouty, and C. Tamon On the Fourier spectrum of monotone functions J. ACM 43 4 1996 747 770
    • (1996) J. ACM , vol.43 , Issue.4 , pp. 747-770
    • Bshouty, N.1    Tamon, C.2
  • 13
    • 85016179756 scopus 로고
    • Learning linear threshold functions in the presence of classification noise
    • T. Bylander, Learning linear threshold functions in the presence of classification noise, in: Proceedings of COLT, 1994, pp. 340-347.
    • (1994) Proceedings of COLT , pp. 340-347
    • Bylander, T.1
  • 15
    • 4544291740 scopus 로고    scopus 로고
    • A simple polynomial-time rescaling algorithm for solving linear programs
    • J. Dunagan, S. Vempala, A simple polynomial-time rescaling algorithm for solving linear programs, in: Proceedings of STOC, 2004, pp. 315-320.
    • (2004) Proceedings of STOC , pp. 315-320
    • Dunagan, J.1    Vempala, S.2
  • 16
    • 57049148607 scopus 로고    scopus 로고
    • Evolvability from learning algorithms
    • V. Feldman, Evolvability from learning algorithms, in: Proceedings of STOC, 2008, pp. 619-628.
    • (2008) Proceedings of STOC , pp. 619-628
    • Feldman, V.1
  • 17
    • 77952334083 scopus 로고    scopus 로고
    • A complete characterization of statistical query learning with applications to evolvability
    • V. Feldman, A complete characterization of statistical query learning with applications to evolvability, in Proceedings of FOCS, 2009, pp. 375-384.
    • (2009) Proceedings of FOCS , pp. 375-384
    • Feldman, V.1
  • 18
    • 84898066322 scopus 로고    scopus 로고
    • Robustness of evolvability
    • V. Feldman, Robustness of evolvability, in: Proceedings of COLT, 2009, pp. 277-292.
    • (2009) Proceedings of COLT , pp. 277-292
    • Feldman, V.1
  • 20
    • 84861596359 scopus 로고    scopus 로고
    • Distribution-independent evolvability of linear threshold functions
    • V. Feldman, Distribution-independent evolvability of linear threshold functions, in: Proceedings of COLT, 2011.
    • (2011) Proceedings of COLT
    • Feldman, V.1
  • 21
    • 77952286782 scopus 로고    scopus 로고
    • On agnostic learning of parities, monomials and halfspaces
    • V. Feldman, P. Gopalan, S. Khot, and A. Ponuswami On agnostic learning of parities, monomials and halfspaces SIAM J. Comput. 39 2 2009 606 645
    • (2009) SIAM J. Comput. , vol.39 , Issue.2 , pp. 606-645
    • Feldman, V.1    Gopalan, P.2    Khot, S.3    Ponuswami, A.4
  • 22
    • 84861596360 scopus 로고    scopus 로고
    • Lower bounds and hardness amplification for learning shallow monotone formulas
    • V. Feldman, H. Lee, R. Servedio, Lower bounds and hardness amplification for learning shallow monotone formulas, in: Proceedings of COLT, 2011.
    • (2011) Proceedings of COLT
    • Feldman, V.1    Lee, H.2    Servedio, R.3
  • 23
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and other learning applications
    • D. Haussler Decision theoretic generalizations of the PAC model for neural net and other learning applications Inform. and Comput. 100 1 1992 78 150
    • (1992) Inform. and Comput. , vol.100 , Issue.1 , pp. 78-150
    • Haussler, D.1
  • 24
    • 0029516814 scopus 로고
    • Hard-core distributions for somewhat hard problems
    • R. Impagliazzo, Hard-core distributions for somewhat hard problems, in: Proceedings of FOCS, 1995, pp. 538-545.
    • (1995) Proceedings of FOCS , pp. 538-545
    • Impagliazzo, R.1
  • 25
    • 84858723486 scopus 로고    scopus 로고
    • Potential-based agnostic boosting
    • A. Kalai, V. Kanade, Potential-based agnostic boosting, in: Proceedings of NIPS, 2009, pp. 880-888.
    • (2009) Proceedings of NIPS , pp. 880-888
    • Kalai, A.1    Kanade, V.2
  • 29
    • 0032202014 scopus 로고    scopus 로고
    • Efficient noise-tolerant learning from statistical queries
    • M. Kearns Efficient noise-tolerant learning from statistical queries J. ACM 45 6 1998 983 1006
    • (1998) J. ACM , vol.45 , Issue.6 , pp. 983-1006
    • Kearns, M.1
  • 30
    • 0028546286 scopus 로고
    • Learning boolean formulas
    • M. Kearns, M. Li, and L. Valiant Learning boolean formulas J. ACM 41 6 1994 1298 1328
    • (1994) J. ACM , vol.41 , Issue.6 , pp. 1298-1328
    • Kearns, M.1    Li, M.2    Valiant, L.3
  • 31
    • 0001553979 scopus 로고
    • Toward efficient agnostic learning
    • M. Kearns, R. Schapire, and L. Sellie Toward efficient agnostic learning Mach. Learn. 17 2-3 1994 115 141
    • (1994) Mach. Learn. , vol.17 , Issue.23 , pp. 115-141
    • Kearns, M.1    Schapire, R.2    Sellie, L.3
  • 32
    • 0028324717 scopus 로고
    • Cryptographic limitations on learning boolean formulae and finite automata
    • M. Kearns, and L. Valiant Cryptographic limitations on learning boolean formulae and finite automata J. ACM 41 1 1994 67 95
    • (1994) J. ACM , vol.41 , Issue.1 , pp. 67-95
    • Kearns, M.1    Valiant, L.2
  • 33
    • 0038290332 scopus 로고    scopus 로고
    • Boosting and hard-core set construction
    • A. Klivans, and R. Servedio Boosting and hard-core set construction Mach. Learn. 51 3 2003 217 238
    • (2003) Mach. Learn. , vol.51 , Issue.3 , pp. 217-238
    • Klivans, A.1    Servedio, R.2
  • 34
    • 35348904454 scopus 로고    scopus 로고
    • Unconditional lower bounds for learning intersections of halfspaces
    • A. Klivans, and A. Sherstov Unconditional lower bounds for learning intersections of halfspaces Mach. Learn. 69 2-3 2007 97 114
    • (2007) Mach. Learn. , vol.69 , Issue.23 , pp. 97-114
    • Klivans, A.1    Sherstov, A.2
  • 38
    • 77952015400 scopus 로고    scopus 로고
    • Characterizing statistical query learning: Simplified notions and proofs
    • B. Szörényi, Characterizing statistical query learning: Simplified notions and proofs, in: ALT, 2009, pp. 186-200.
    • (2009) ALT , pp. 186-200
    • Szörényi, B.1
  • 39
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L.G. Valiant A theory of the learnable Comm. ACM 27 11 1984 1134 1142
    • (1984) Comm. ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 40
    • 60349123335 scopus 로고    scopus 로고
    • Evolvability
    • 1-3.21
    • L.G. Valiant Evolvability J. ACM 56 1 2009 3 1-3.21
    • (2009) J. ACM , vol.56 , Issue.1 , pp. 3
    • Valiant, L.G.1
  • 41
    • 84861599257 scopus 로고    scopus 로고
    • Distribution free evolvability of polynomial functions over all convex loss functions
    • P. Valiant Distribution free evolvability of polynomial functions over all convex loss functions Electron. Colloq. Comput. Complexity (ECCC) 11 089 2011
    • (2011) Electron. Colloq. Comput. Complexity (ECCC) , vol.11 , Issue.89
    • Valiant, P.1
  • 42
    • 17444425308 scopus 로고    scopus 로고
    • New lower bounds for statistical query learning
    • Ke Yang New lower bounds for statistical query learning J. Comput. System Sci. 70 4 2005 485 509
    • (2005) J. Comput. System Sci. , vol.70 , Issue.4 , pp. 485-509
    • Yang, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.