메뉴 건너뛰기




Volumn 30, Issue , 2013, Pages 288-316

Active and passive learning of linear separators under log-concave distributions

Author keywords

Active learning; Agnostic learning; ERM; Nearly log concave distributions; PAC learning; Tsybakov low noise condition

Indexed keywords

POLYNOMIAL APPROXIMATION;

EID: 84898034026     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (135)

References (56)
  • 1
    • 0043124612 scopus 로고
    • Rates of growth and sample moduli for weighted empirical processes indexed by sets
    • K.S. Alexander. Rates of growth and sample moduli for weighted empirical processes indexed by sets. Probability Theory and Related Fields, 1987.
    • (1987) Probability Theory and Related Fields
    • Alexander, K.S.1
  • 2
    • 78751549650 scopus 로고    scopus 로고
    • A non-linear lower bound for planar epsilon-nets
    • N. Alon. A non-linear lower bound for planar epsilon-nets. FOCS, pages 341-346, 2010.
    • (2010) FOCS , pp. 341-346
    • Alon, N.1
  • 3
    • 85025262253 scopus 로고
    • Sampling and integration of near log-concave functions
    • D. Applegate and R. Kannan. Sampling and integration of near log-concave functions. In STOC, 1991.
    • (1991) STOC
    • Applegate, D.1    Kannan, R.2
  • 4
    • 0001071323 scopus 로고
    • Plongements lipschitziens dans
    • P. Assouad. Plongements lipschitziens dans. R. Bull. Soc. Math. France, 111(4): 429-448, 1983.
    • (1983) R. Bull. Soc. Math. France , vol.111 , Issue.4 , pp. 429-448
    • Assouad, P.1
  • 7
    • 84860640656 scopus 로고    scopus 로고
    • The true sample complexity of active learning
    • M.-F. Balcan, S. Hanneke, and J. Wortman. The true sample complexity of active learning. In COLT, 2008.
    • (2008) COLT
    • Balcan, M.-F.1    Hanneke, S.2    Wortman, J.3
  • 10
    • 0024750852 scopus 로고
    • Learnability and the vapnik-chervonenkis dimension
    • A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. JACM, 36(4): 929-965, 1989.
    • (1989) JACM , vol.36 , Issue.4 , pp. 929-965
    • Blumer, A.1    Ehrenfeucht, A.2    Haussler, D.3    Warmuth, M.K.4
  • 12
    • 67349151635 scopus 로고    scopus 로고
    • Using the doubling dimension to analyze the generalization of learning algorithms
    • N. H. Bshouty, Y. Li, and P. M. Long. Using the doubling dimension to analyze the generalization of learning algorithms. JCSS, 2009.
    • (2009) JCSS
    • Bshouty, N.H.1    Li, Y.2    Long, P.M.3
  • 13
    • 33947693271 scopus 로고    scopus 로고
    • An inequality for nearly log-concave distributions with applications to learning
    • C. Caramanis and S. Mannor. An inequality for nearly log-concave distributions with applications to learning. IEEE Transactions on Information Theory, 2007.
    • (2007) IEEE Transactions on Information Theory
    • Caramanis, C.1    Mannor, S.2
  • 14
    • 56449098707 scopus 로고    scopus 로고
    • Minimax bounds for active learning
    • R. Castro and R. Nowak. Minimax bounds for active learning. In COLT, 2007.
    • (2007) COLT
    • Castro, R.1    Nowak, R.2
  • 15
    • 84898053376 scopus 로고    scopus 로고
    • Learning noisy linear classifiers via adaptive and selective sampling
    • N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Learning noisy linear classifiers via adaptive and selective sampling. Machine Learning, 2010.
    • (2010) Machine Learning
    • Cesa-Bianchi, N.1    Gentile, C.2    Zaniboni, L.3
  • 16
    • 33846781469 scopus 로고    scopus 로고
    • Improved approximation algorithms for geometric set cover
    • K. L. Clarkson and K. Varadarajan. Improved approximation algorithms for geometric set cover. Discrete Comput. Geom., 37(1): 43-58, 2007.
    • (2007) Discrete Comput. Geom. , vol.37 , Issue.1 , pp. 43-58
    • Clarkson, K.L.1    Varadarajan, K.2
  • 17
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. In ICML, 1994.
    • (1994) ICML
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 18
    • 71049162986 scopus 로고    scopus 로고
    • Coarse sample complexity bounds for active learning
    • S. Dasgupta. Coarse sample complexity bounds for active learning. In NIPS, Volume 18, 2005.
    • (2005) NIPS , vol.18
    • Dasgupta, S.1
  • 20
    • 33745762904 scopus 로고    scopus 로고
    • Analysis of perceptron-based active learning
    • S. Dasgupta, A. Kalai, and C. Monteleoni. Analysis of perceptron-based active learning. In COLT, 2005.
    • (2005) COLT
    • Dasgupta, S.1    Kalai, A.2    Monteleoni, C.3
  • 24
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Y. Freund, H.S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28(2-3): 133-168, 1997.
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 25
    • 84898067489 scopus 로고    scopus 로고
    • Active learning for smooth problems
    • E. J. Friedman. Active learning for smooth problems. In COLT, 2009.
    • (2009) COLT
    • Friedman, E.J.1
  • 27
    • 33746227538 scopus 로고    scopus 로고
    • Concentration inequalities and asymptotic results for ratio type empirical processes
    • E. Giné and V. Koltchinskii. Concentration inequalities and asymptotic results for ratio type empirical processes. The Annals of Probability, 34(3): 1143-1216, 2006.
    • (2006) The Annals of Probability , vol.34 , Issue.3 , pp. 1143-1216
    • Giné, E.1    Koltchinskii, V.2
  • 28
    • 84898030270 scopus 로고    scopus 로고
    • Efficient pool-based active learning of halfspaces
    • A. Gonen, S. Sabato, and S. Shalev-Shwartz. Efficient pool-based active learning of halfspaces. In ICML, 2013.
    • (2013) ICML
    • Gonen, A.1    Sabato, S.2    Shalev-Shwartz, S.3
  • 29
    • 56449094315 scopus 로고    scopus 로고
    • A bound on the label complexity of agnostic active learning
    • S. Hanneke. A bound on the label complexity of agnostic active learning. In ICML, 2007.
    • (2007) ICML
    • Hanneke, S.1
  • 30
    • 79551594780 scopus 로고    scopus 로고
    • Rates of convergence in active learning
    • S. Hanneke. Rates of convergence in active learning. The Annals of Statistics, 39(1): 333-361, 2011.
    • (2011) The Annals of Statistics , vol.39 , Issue.1 , pp. 333-361
    • Hanneke, S.1
  • 33
    • 15744365331 scopus 로고
    • Epsilon nets and simplex range queries
    • David Haussler and Emo Welzl. Epsilon nets and simplex range queries. Disc. Comp. Geometry, 2: 127-151, 1987.
    • (1987) Disc. Comp. Geometry , vol.2 , pp. 127-151
    • Haussler, D.1    Welzl, E.2
  • 36
  • 37
    • 84898033124 scopus 로고    scopus 로고
    • Baum's algorithm learns intersections of halfspaces with respect to log-concave distributions
    • A. R. Klivans, P. M. Long, and A. Tang. Baum's algorithm learns intersections of halfspaces with respect to log-concave distributions. In RANDOM, 2009b.
    • (2009) RANDOM
    • Klivans, A.R.1    Long, P.M.2    Tang, A.3
  • 38
    • 78649426154 scopus 로고    scopus 로고
    • Rademacher complexities and bounding the excess risk in active learning
    • V. Koltchinskii. Rademacher complexities and bounding the excess risk in active learning. Journal of Machine Learning Research, 11: 2457-2485, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2457-2485
    • Koltchinskii, V.1
  • 41
    • 0029403808 scopus 로고
    • On the sample complexity of PAC learning halfspaces against the uniform distribution
    • P. M. Long. On the sample complexity of PAC learning halfspaces against the uniform distribution. IEEE Transactions on Neural Networks, 6(6): 1556-1559, 1995.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.6 , pp. 1556-1559
    • Long, P.M.1
  • 42
    • 0042092042 scopus 로고    scopus 로고
    • An upper bound on the sample complexity of PAC learning halfspaces with respect to the uniform distribution
    • P. M. Long. An upper bound on the sample complexity of PAC learning halfspaces with respect to the uniform distribution. Information Processing Letters, 2003.
    • (2003) Information Processing Letters
    • Long, P.M.1
  • 46
    • 3142722249 scopus 로고    scopus 로고
    • Estimating the performance of kernel classes
    • S. Mendelson. Estimating the performance of kernel classes. Journal of Machine Learning Research, 4: 759-771, 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 759-771
    • Mendelson, S.1
  • 49
    • 85162323750 scopus 로고    scopus 로고
    • Lower bounds for passive and active learning
    • M. Raginsky and A. Rakhlin. Lower bounds for passive and active learning. In NIPS, 2011.
    • (2011) NIPS
    • Raginsky, M.1    Rakhlin, A.2
  • 50
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L.G. Valiant. A theory of the learnable. Communications of the ACM, 27(11): 1134-1142, 1984.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 53
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2): 264-280, 1971.
    • (1971) Theory of Probability and its Applications , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V.1    Chervonenkis, A.2
  • 56
    • 78649233720 scopus 로고    scopus 로고
    • A random-sampling-based algorithm for learning intersections of halfspaces
    • S. Vempala. A random-sampling-based algorithm for learning intersections of halfspaces. JACM, 57(6), 2010.
    • (2010) JACM , vol.57 , Issue.6
    • Vempala, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.