메뉴 건너뛰기




Volumn 11, Issue 2, 2011, Pages 2356-2366

Predictions of oil/chemical tanker main design parameters using computational intelligence techniques

Author keywords

Computational intelligence; Machine learning; Naval engineering; Neural networks; Ship design main parameters

Indexed keywords

COMPUTATIONAL INTELLIGENCE; COMPUTATIONAL INTELLIGENCE METHODS; COMPUTATIONAL INTELLIGENCE TECHNIQUES; DESIGN PARAMETERS; DESIGN STAGE; MACHINE LEARNING; MAIN PARAMETERS; NAVAL ENGINEERING; SHIP DESIGN MAIN PARAMETERS; SHIP DESIGNS; SHIP MODELING; SPEED PARAMETERS;

EID: 78751609525     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2010.08.015     Document Type: Conference Paper
Times cited : (35)

References (36)
  • 1
    • 1842865575 scopus 로고    scopus 로고
    • Design of a robust neural network structure for determining initial stability particulars of fishing vessels
    • A.D. Alkan, K. Gulez, and H. Yilmaz Design of a robust neural network structure for determining initial stability particulars of fishing vessels Ocean Engineering 31 2004 761 777
    • (2004) Ocean Engineering , vol.31 , pp. 761-777
    • Alkan, A.D.1    Gulez, K.2    Yilmaz, H.3
  • 3
    • 78751625368 scopus 로고    scopus 로고
    • Using machine learning methods in the computation of engine power of motorboats and the comparison of these methods
    • Konya, Turkey
    • M. Bal, M.F. Amasyali, U.B. Celebi, and S. Ekinci Using machine learning methods in the computation of engine power of motorboats and the comparison of these methods Int. Conference on Modelling and Simulation-AMSE'06 Konya, Turkey 2006
    • (2006) Int. Conference on Modelling and Simulation-AMSE'06
    • Bal, M.1    Amasyali, M.F.2    Celebi, U.B.3    Ekinci, S.4
  • 4
    • 0037040065 scopus 로고    scopus 로고
    • An investigation of roll characteristics of two full scale ships at sea
    • M.R. Haddara, and M. Wishahy An investigation of roll characteristics of two full scale ships at sea Ocean Engineering 29 2002 651 666
    • (2002) Ocean Engineering , vol.29 , pp. 651-666
    • Haddara, M.R.1    Wishahy, M.2
  • 5
    • 0037022942 scopus 로고    scopus 로고
    • Neural-fuzzy fault diagnosis in a marine propulsion shaft system
    • H. Kuo, L. Wu, and J. Chen Neural-fuzzy fault diagnosis in a marine propulsion shaft system Journal of Materials Processing Technology 122 2002 12 22
    • (2002) Journal of Materials Processing Technology , vol.122 , pp. 12-22
    • Kuo, H.1    Wu, L.2    Chen, J.3
  • 6
    • 8144231417 scopus 로고    scopus 로고
    • Identification of the nonlinear ship rolling motion equation using the measured response at sea
    • A.B. Mahfouz Identification of the nonlinear ship rolling motion equation using the measured response at sea Ocean Engineering 31 2004 2139 2156
    • (2004) Ocean Engineering , vol.31 , pp. 2139-2156
    • Mahfouz, A.B.1
  • 7
    • 0042010117 scopus 로고    scopus 로고
    • Intelligent ship autopilots - A historical perspective
    • G.N. Roberts, R. Sutton, A. Zirilli, and A. Tiano Intelligent ship autopilots - a historical perspective Mechatronics 13 2003 1091 1103
    • (2003) Mechatronics , vol.13 , pp. 1091-1103
    • Roberts, G.N.1    Sutton, R.2    Zirilli, A.3    Tiano, A.4
  • 8
    • 0037023583 scopus 로고    scopus 로고
    • Damage identification in a ship's structure using neural networks
    • A. Zubaydi, M.R. Haddara, and A.S.J. Swamida Damage identification in a ship's structure using neural networks Ocean Engineering 29 2002 1187 1200
    • (2002) Ocean Engineering , vol.29 , pp. 1187-1200
    • Zubaydi, A.1    Haddara, M.R.2    Swamida, A.S.J.3
  • 9
    • 0035816843 scopus 로고    scopus 로고
    • Application of artificial intelligence techniques in automatic hull form generation
    • M.M. Islam, R.H. Khondoker, and C.M. Rahman Application of artificial intelligence techniques in automatic hull form generation Ocean Engineering 28 2001 1531 1544
    • (2001) Ocean Engineering , vol.28 , pp. 1531-1544
    • Islam, M.M.1    Khondoker, R.H.2    Rahman, C.M.3
  • 11
    • 0031966247 scopus 로고    scopus 로고
    • Classification of underwater signals using wavelet transforms and neural networks
    • C. Chen, J. Lee, and M. Lin Classification of underwater signals using wavelet transforms and neural networks Mathl. Comput. Model. 27 2 1998 47 60
    • (1998) Mathl. Comput. Model. , vol.27 , Issue.2 , pp. 47-60
    • Chen, C.1    Lee, J.2    Lin, M.3
  • 14
    • 33746927989 scopus 로고    scopus 로고
    • Ship noise classification using probabilistic neural network and AR model coefficients
    • M. Farrokhrooz, and M. Karimi Ship noise classification using probabilistic neural network and AR model coefficients IEEE, Oceans 2005-Europe, vol. 2 2005 1107 1110
    • (2005) IEEE, Oceans 2005-Europe, Vol. 2 , pp. 1107-1110
    • Farrokhrooz, M.1    Karimi, M.2
  • 20
    • 12144264770 scopus 로고    scopus 로고
    • Neural network and M5 model trees in modelling water level-discharge relationship
    • B. Bhattacharya, and D.P. Solomanite Neural network and M5 model trees in modelling water level-discharge relationship Neurocomputing 53 2005 381 396
    • (2005) Neurocomputing , vol.53 , pp. 381-396
    • Bhattacharya, B.1    Solomanite, D.P.2
  • 21
    • 10244219830 scopus 로고    scopus 로고
    • A heuristic training for support vector regression
    • W. Wang, and Z. Xu A heuristic training for support vector regression Neurocomputing 61 2004 259 275
    • (2004) Neurocomputing , vol.61 , pp. 259-275
    • Wang, W.1    Xu, Z.2
  • 22
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, and Hirotugu A new look at the statistical model identification IEEE Transactions on Automatic Control 19 6 1974 716 723
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike1    Hirotugu2
  • 25
    • 0142259818 scopus 로고    scopus 로고
    • Radial basis function and multilayer perceptron neural networks for sea water optically active parameter estimation in case waters: A comparison
    • G. Corsini, M. Diani, R. Grasso, M. De Martino, P. Mantero, and S.B. Serpico Radial basis function and multilayer perceptron neural networks for sea water optically active parameter estimation in case waters: a comparison International Journal Remote Sensing 24 20 2003
    • (2003) International Journal Remote Sensing , vol.24 , Issue.20
    • Corsini, G.1    Diani, M.2    Grasso, R.3    De Martino, M.4    Mantero, P.5    Serpico, S.B.6
  • 28
    • 0026254768 scopus 로고
    • A generalized regression neural network
    • NOVEMBER
    • D.F. Specht A generalized regression neural network IEEE Transactions on Neural Networks 2 November 1991 568 576
    • (1991) IEEE Transactions on Neural Networks , vol.2 , pp. 568-576
    • Specht, D.F.1
  • 29
    • 0033360674 scopus 로고    scopus 로고
    • Multiple linear regression analysis of the overlay accuracy model
    • MAY
    • Z.C. Lin, and W.J. Wu Multiple linear regression analysis of the overlay accuracy model IEEE transactions on Semiconductor Manufacturing 12 May (2) 1999 229 237
    • (1999) IEEE Transactions on Semiconductor Manufacturing , vol.12 , Issue.2 , pp. 229-237
    • Lin, Z.C.1    Wu, W.J.2
  • 33
    • 0030215806 scopus 로고    scopus 로고
    • Orthogonal least squares learning algorithm with local adaptation process for the radial basis function networks
    • E.S. Cheng, H. Yang, and S. Bs Orthogonal least squares learning algorithm with local adaptation process for the radial basis function networks IEEE Signal Processing Letters 3 1996 253 255
    • (1996) IEEE Signal Processing Letters , vol.3 , pp. 253-255
    • Cheng, E.S.1    Yang, H.2    Bs, S.3
  • 36
    • 33847392486 scopus 로고    scopus 로고
    • Forecast comparison of principal component regression and principal covariate regression
    • C. Heij, P.J.F. Groenen, and D. Van Dijk Forecast comparison of principal component regression and principal covariate regression Computational Statistics and Data Analysis 51 2007 3612 3625
    • (2007) Computational Statistics and Data Analysis , vol.51 , pp. 3612-3625
    • Heij, C.1    Groenen, P.J.F.2    Van Dijk, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.