메뉴 건너뛰기




Volumn 15, Issue 6, 2011, Pages 827-841

A metric for unsupervised metalearning

Author keywords

behavior distance; clustering; Unsupervised metalearning

Indexed keywords

BEHAVIOR DISTANCE; CLUSTERING; DISTANCE FUNCTIONS; ENSEMBLE LEARNING; METALEARNING;

EID: 84863036476     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/IDA-2011-0498     Document Type: Article
Times cited : (25)

References (36)
  • 1
    • 0030235637 scopus 로고    scopus 로고
    • Error reduction through learning multiple descriptions
    • K. Ali and M. Pazzani, Error reduction through learning multiple descriptions, Machine Learning 24(3) (1996), 173-202.
    • (1996) Machine Learning , vol.24 , Issue.3 , pp. 173-202
    • Ali, K.1    Pazzani, M.2
  • 2
    • 30344483921 scopus 로고    scopus 로고
    • On learning algorithm selection for classification
    • S. Ali and K.A. Smith, On learning algorithm selection for classification, Applied Soft Computing 6(2) (2006), 119-138.
    • (2006) Applied Soft Computing , vol.6 , Issue.2 , pp. 119-138
    • Ali, S.1    Smith, K.A.2
  • 3
    • 36948999941 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • A.Asuncion and D.J. Newman, UCI machine learning repository [http://archive.ics.uci.edu/ml/], University of California, Irvine, School of Information and Computer Sciences, 2007.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 6
    • 0037361994 scopus 로고    scopus 로고
    • Ranking learning algorithms: Using ibl and meta-learning on accuracy and time results
    • P. Brazdil, C. Soares and J. Pinto da Costa, Ranking learning algorithms: Using ibl and meta-learning on accuracy and time results, Machine Learning 50(3) (2003), 251-277.
    • (2003) Machine Learning , vol.50 , Issue.3 , pp. 251-277
    • Brazdil, P.1    Soares, C.2    Pinto Da Costa, J.3
  • 8
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • G. Brown, J.Wyatt, R. Harris and X. Yao, Diversity creation methods: A survey and categorisation, Information Fusion 6(1) (2005), 5-20.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 11
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T.G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization, Machine Learning 40(2) (2000), 139-157.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 13
    • 79951603972 scopus 로고    scopus 로고
    • A diversity measure for tree-based classifier ensembles
    • D. Baier, R. Decker and L. Schmidt-Thieme, eds, Springer Berlin Heidelberg
    • E. Gatnar, A diversity measure for tree-based classifier ensembles, in: Data Analysis and Decision Support, D. Baier, R. Decker and L. Schmidt-Thieme, eds, Springer Berlin Heidelberg, 2005, pp. 30-38.
    • (2005) Data Analysis and Decision Support , pp. 30-38
    • Gatnar, E.1
  • 14
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification processes
    • G. Giacinto and F. Roli, Design of effective neural network ensembles for image classification processes, Journal of Image Vision and Computing 19 (2001), 600-707.
    • (2001) Journal of Image Vision and Computing , vol.19 , pp. 600-707
    • Giacinto, G.1    Roli, F.2
  • 15
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • R.C. Holte, Very simple classification rules perform well on most commonly used datasets, Machine Learning 11(1) (1993), 63-91.
    • (1993) Machine Learning , vol.11 , Issue.1 , pp. 63-91
    • Holte, R.C.1
  • 16
    • 1642280141 scopus 로고    scopus 로고
    • On data and algorithms: Understanding inductive performance
    • A. Kalousis, J. Gama and M. Hilario, On data and algorithms: Understanding inductive performance, Machine Learning 54(3) (2004), 275-312.
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 275-312
    • Kalousis, A.1    Gama, J.2    Hilario, M.3
  • 18
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L.I. Kuncheva and C.J. Whitaker, Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, Machine Learning 51(2) (2003), 181-207.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 26
    • 35748932852 scopus 로고    scopus 로고
    • R. Development Core Team. R Foundation for Statistical Computing, Vienna, Austria,. ISBN 3-900051-07-0
    • R. Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2007. ISBN 3-900051-07-0.
    • (2007) R: A Language and Environment for Statistical Computing
  • 30
    • 49749086726 scopus 로고    scopus 로고
    • Cross-disciplinary perspectives on meta-learning for algorithm selection
    • K.A. Smith-Miles, Cross-disciplinary perspectives on meta-learning for algorithm selection, ACM Computing Surveys, 2008.
    • (2008) ACM Computing Surveys
    • Smith-Miles, K.A.1
  • 32
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measures
    • E.K. Tang, P.N. Suganthan and X. Yao, An analysis of diversity measures, Machine Learning 65(1) (2006), 247-271.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 33


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.