메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Generic object crowd tracking by multi-task learning

Author keywords

[No Author keywords available]

Indexed keywords

DETECTORS; LINEARIZATION;

EID: 84898458531     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5244/C.27.73     Document Type: Conference Paper
Times cited : (15)

References (50)
  • 3
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning fromlabeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning fromlabeled and unlabeled examples. The Journal ofMachine Learning Research, 7:2399-2434, 2006.
    • (2006) The Journal OfMachine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 9
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • R. Caruana. Multitask learning. Machine Learning, 28(1):41-75, 1997.
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 12
    • 80052873646 scopus 로고    scopus 로고
    • Multiple target tracking in world coordinate with single, minimally calibrated camera
    • W. Choi and S. Savarese. Multiple target tracking in world coordinate with single, minimally calibrated camera. In ECCV. 2010.
    • (2010) ECCV
    • Choi, W.1    Savarese, S.2
  • 14
    • 84898401686 scopus 로고    scopus 로고
    • Group tracking: Exploring mutual relations for multiple object tracking
    • G. Duan, H. Ai, S. Cao, and S. Lao. Group tracking: exploring mutual relations for multiple object tracking. In ECCV. 2012.
    • (2012) ECCV
    • Duan, G.1    Ai, H.2    Cao, S.3    Lao, S.4
  • 19
    • 84896525190 scopus 로고    scopus 로고
    • (MP)2t: Multiple people multiple parts tracker
    • H. Izadinia, I. Saleemi, W. Li, and M. Shah. (mp)2t: Multiple people multiple parts tracker. In ECCV. 2012.
    • (2012) ECCV
    • Izadinia, H.1    Saleemi, I.2    Li, W.3    Shah, M.4
  • 28
    • 84872258670 scopus 로고    scopus 로고
    • Manifold regularized multi-task learning for semi-supervised multi-label image classification
    • Y. Luo, D. Tao, B. Geng, C. Xu, and S. Maybank. Manifold regularized multi-task learning for semi-supervised multi-label image classification. IEEE Transactions on Image Processing, 2013.
    • (2013) IEEE Transactions on Image Processing
    • Luo, Y.1    Tao, D.2    Geng, B.3    Xu, C.4    Maybank, S.5
  • 30
    • 57649169327 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite objective function
    • core discussion papers 2007076, université catholique de louvain
    • Y. Nesterov. Gradient methods for minimizing composite objective function. core discussion papers 2007076, université catholique de louvain. Center for Operations Research and Econometrics (CORE), 2007.
    • (2007) Center for Operations Research and Econometrics (CORE)
    • Nesterov, Y.1
  • 31
    • 35048849881 scopus 로고    scopus 로고
    • A boosted particle filter: Multitarget detection and tracking
    • K. Okuma, A. Taleghani, N. de Freitas, J. Little, and D. Lowe. A boosted particle filter: Multitarget detection and tracking. In ECCV, pages 28-39. 2004.
    • (2004) ECCV , pp. 28-39
    • Okuma, K.1    Taleghani, A.2    De Freitas, N.3    Little, J.4    Lowe, D.5
  • 35
    • 80052891563 scopus 로고    scopus 로고
    • A stochastic graph evolution framework for robust multi-target tracking
    • B. Song, T. Jeng, E. Staudt, and A. Roy-Chowdhury. A stochastic graph evolution framework for robust multi-target tracking. In ECCV. 2010.
    • (2010) ECCV
    • Song, B.1    Jeng, T.2    Staudt, E.3    Roy-Chowdhury, A.4
  • 36
    • 77953178519 scopus 로고    scopus 로고
    • Using individuality to track individuals: Clustering individual trajectories in crowds using local appearance and frequency trait
    • D. Sugimura, K. Kitani, T. Okabe, Y. Sato, and A. Sugimoto. Using individuality to track individuals: Clustering individual trajectories in crowds using local appearance and frequency trait. In International Conference on Computer Vision (ICCV), 2009.
    • (2009) International Conference on Computer Vision (ICCV)
    • Sugimura, D.1    Kitani, K.2    Okabe, T.3    Sato, Y.4    Sugimoto, A.5
  • 43
    • 84866644597 scopus 로고    scopus 로고
    • Multi-target tracking by online learning of non-linear motion patterns and robust appearance models
    • B. Yang and R. Nevatia. Multi-target tracking by online learning of non-linear motion patterns and robust appearance models. In Computer Vision and Pattern Recognition (CVPR), 2012.
    • (2012) Computer Vision and Pattern Recognition (CVPR)
    • Yang, B.1    Nevatia, R.2
  • 48
    • 84898453338 scopus 로고    scopus 로고
    • Tracking using motion patterns for very crowded scenes
    • X. Zhao, D. Gong, and G. Medioni. Tracking using motion patterns for very crowded scenes. In ECCV. 2012.
    • (2012) ECCV
    • Zhao, X.1    Gong, D.2    Medioni, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.