메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1815-1821

Part-based multiple-person tracking with partial occlusion handling

Author keywords

[No Author keywords available]

Indexed keywords

DETECTION PERFORMANCE; DETECTION STAGE; HUMAN BODIES; HUMAN DETECTION; PARTIAL OCCLUSIONS; PROBABILITY OF DETECTION; STATE-OF-THE-ART PERFORMANCE; SVM CLASSIFIERS;

EID: 84866648554     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247879     Document Type: Conference Paper
Times cited : (349)

References (23)
  • 1
    • 84866640458 scopus 로고    scopus 로고
    • Ensemble tracking
    • S. Avidan. Ensemble tracking. In PAMI, 2010.
    • (2010) PAMI
    • Avidan, S.1
  • 2
    • 77953182319 scopus 로고    scopus 로고
    • Visual tracking with online multiple instance learning
    • B. Babenko, M. Yang, and M. Hsuan. Visual tracking with online multiple instance learning. In PAMI, 2010.
    • (2010) PAMI
    • Babenko, B.1    Yang, M.2    Hsuan, M.3
  • 3
    • 80052894150 scopus 로고    scopus 로고
    • Stable multi-target tracking in realtime surveillance video
    • B. Benfold and I. Reid. Stable multi-target tracking in realtime surveillance video. In CVPR, 2011.
    • (2011) CVPR
    • Benfold, B.1    Reid, I.2
  • 5
    • 80052897117 scopus 로고    scopus 로고
    • Multiobject tracking as maximum weight independent set
    • W. Brendel, M. Amer, and S. Todorovic. Multiobject tracking as maximum weight independent set. In CVPR, 2011.
    • (2011) CVPR
    • Brendel, W.1    Amer, M.2    Todorovic, S.3
  • 6
    • 0344982890 scopus 로고    scopus 로고
    • Online selection of discriminative tracking features
    • R. Collins and Y. Liu. Online selection of discriminative tracking features. In ICCV, 2003.
    • (2003) ICCV
    • Collins, R.1    Liu, Y.2
  • 8
    • 80052910974 scopus 로고    scopus 로고
    • Context tracker: Exploring supporters and distracters in unconstrained environments
    • T. B. Dinh, N. Vo, and G. Medioni. Context tracker: Exploring supporters and distracters in unconstrained environments. In CVPR, 2011.
    • (2011) CVPR
    • Dinh, T.B.1    Vo, N.2    Medioni, G.3
  • 9
  • 10
    • 84898020313 scopus 로고    scopus 로고
    • Real-time tracking via on-line boosting
    • H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boosting. In BMVC, 2006.
    • (2006) BMVC
    • Grabner, H.1    Grabner, M.2    Bischof, H.3
  • 11
    • 77956005443 scopus 로고    scopus 로고
    • P-n learning?: Bootstrapping binary classifiers by structural constraints
    • Z. Kalal. P-n learning?: Bootstrapping binary classifiers by structural constraints. In ICCV, 2010.
    • (2010) ICCV
    • Kalal, Z.1
  • 12
    • 62249209598 scopus 로고    scopus 로고
    • Framework for performance evaluation for face, text and vehicle detection and tracking in video: Data, metrics, and protocol
    • R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar, J. Garofolo, M. Boonstra, V. Korzhova, and J. Zhang. Framework for performance evaluation for face, text and vehicle detection and tracking in video: data, metrics, and protocol. In PAMI, 2009.
    • (2009) PAMI
    • Kasturi, R.1    Goldgof, D.2    Soundararajan, P.3    Manohar, V.4    Garofolo, J.5    Boonstra, M.6    Korzhova, V.7    Zhang, J.8
  • 13
    • 77956000998 scopus 로고    scopus 로고
    • Multi-target tracking by on-line learned discriminative appearance models
    • C. Kuo, C. Huang, and R. Nevatia. Multi-target tracking by on-line learned discriminative appearance models. In CVPR, 2010.
    • (2010) CVPR
    • Kuo, C.1    Huang, C.2    Nevatia, R.3
  • 15
    • 80052913748 scopus 로고    scopus 로고
    • Improving data association by joint modeling of pedestrian trajectories and groupings
    • S. Pellegrini, A. Ess, and L. van Gool. Improving data association by joint modeling of pedestrian trajectories and groupings. In ECCV, 2010.
    • (2010) ECCV
    • Pellegrini, S.1    Ess, A.2    Van Gool, L.3
  • 16
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • MIT Press
    • J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in Large Margin Classifiers. MIT Press, 1999.
    • (1999) Advances in Large Margin Classifiers
    • Platt, J.C.1
  • 19
    • 0028112849 scopus 로고
    • Good features to track
    • J. Shi and C. Tomasi. Good features to track. In CVPR, 1994.
    • (1994) CVPR
    • Shi, J.1    Tomasi, C.2
  • 20
    • 85020603202 scopus 로고    scopus 로고
    • An hog-lbp human detector with partial occlusion handling
    • X.Wang and T. Han. An hog-lbp human detector with partial occlusion handling. In ICCV, 2009.
    • (2009) ICCV
    • Wang, X.1    Han, T.2
  • 21
    • 34548102203 scopus 로고    scopus 로고
    • Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors
    • B. Wu and R. Nevatia. Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. In International Journal of Computer Vision, 2007.
    • (2007) International Journal of Computer Vision
    • Wu, B.1    Nevatia, R.2
  • 22
  • 23
    • 51949088494 scopus 로고    scopus 로고
    • Global data association for multi-object tracking using network flows
    • L. Zhang, Y. Li, and R. Nevatia. Global data association for multi-object tracking using network flows. In CVPR, 2008.
    • (2008) CVPR
    • Zhang, L.1    Li, Y.2    Nevatia, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.