메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1918-1925

Multi-target tracking by online learning of non-linear motion patterns and robust appearance models

Author keywords

[No Author keywords available]

Indexed keywords

APPEARANCE MODELS; DIRECTION CHANGE; ENTRY/EXIT; LINEAR MOTION; MULTI-TARGET TRACKING; MULTIPLE INSTANCE LEARNING; NON-LINEAR MOTIONS; ONLINE LEARNING; PUBLIC DATA; ROBUST MOTION; STATE-OF-ART METHODS; TRAINING SAMPLE;

EID: 84866644597     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247892     Document Type: Conference Paper
Times cited : (244)

References (22)
  • 1
    • 80052910259 scopus 로고    scopus 로고
    • Multi-target tracking by continuous energy minimization
    • 6, 7
    • A. Andriyenko and K. Schindler. Multi-target tracking by continuous energy minimization. In CVPR, 2011. 6, 7
    • (2011) CVPR
    • Andriyenko, A.1    Schindler, K.2
  • 2
    • 70450188146 scopus 로고    scopus 로고
    • Visual tracking with online multiple instance learning
    • 2, 4
    • B. Babenko, M.-H. Yang, and S. Belongie. Visual Tracking with Online Multiple Instance Learning. In CVPR, 2009. 2, 4
    • (2009) CVPR
    • Babenko, B.1    Yang, M.-H.2    Belongie, S.3
  • 3
    • 80052894150 scopus 로고    scopus 로고
    • Stable multi-target tracking in real-time surveillance video
    • 1, 2, 3
    • B. Benfold and I. Reid. Stable multi-target tracking in real-time surveillance video. In CVPR, 2011. 1, 2, 3
    • (2011) CVPR
    • Benfold, B.1    Reid, I.2
  • 4
    • 77956005563 scopus 로고    scopus 로고
    • Tracking with local spatio-temporal motion patterns in extremely crowded scenes
    • 2
    • L. Kratz and K. Nishino. Tracking with local spatio-temporal motion patterns in extremely crowded scenes. In CVPR, 2010. 2
    • (2010) CVPR
    • Kratz, L.1    Nishino, K.2
  • 5
    • 77956000998 scopus 로고    scopus 로고
    • Multi-target tracking by online learned discriminative appearance models
    • 1, 2, 4, 5, 6, 7, 8
    • C.-H. Kuo, C. Huang, and R. Nevatia. Multi-target tracking by online learned discriminative appearance models. In CVPR, 2010. 1, 2, 4, 5, 6, 7, 8
    • (2010) CVPR
    • Kuo, C.-H.1    Huang, C.2    Nevatia, R.3
  • 6
    • 80052910976 scopus 로고    scopus 로고
    • How does person identity recognition help multi-person tracking? in
    • 1, 2, 3, 4, 5, 6, 7, 8
    • C.-H. Kuo and R. Nevatia. How does person identity recognition help multi-person tracking? In CVPR, 2011. 1, 2, 3, 4, 5, 6, 7, 8
    • (2011) CVPR
    • Kuo, C.-H.1    Nevatia, R.2
  • 7
    • 34948825409 scopus 로고    scopus 로고
    • Tracking in low frame rate video: A cascade particle filter with discriminative observers of different lifespans
    • 2
    • Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade. Tracking in low frame rate video: A cascade particle filter with discriminative observers of different lifespans. In CVPR, 2007. 2
    • (2007) CVPR
    • Li, Y.1    Ai, H.2    Yamashita, T.3    Lao, S.4    Kawade, M.5
  • 8
    • 80052900520 scopus 로고    scopus 로고
    • Identifying players in broadcast sports videos using conditional random fields
    • 2, 4
    • W.-L. Lu, J.-A. Ting, K. P. Murphy, and J. J. Little. Identifying players in broadcast sports videos using conditional random fields. In CVPR, 2011. 2, 4
    • (2011) CVPR
    • Lu, W.-L.1    Ting, J.-A.2    Murphy, K.P.3    Little, J.J.4
  • 9
    • 78149484378 scopus 로고    scopus 로고
    • Particle filter trackingwith online multiple instance learning
    • 5
    • Z. Ni, S. Sunderrajan, A. Rahimi, and B. Manjunath. Particle filter trackingwith online multiple instance learning. In ICPR, 2010. 5
    • (2010) ICPR
    • Ni, Z.1    Sunderrajan, S.2    Rahimi, A.3    Manjunath, B.4
  • 10
    • 80052913748 scopus 로고    scopus 로고
    • Improving data association by joint modeling of pedestrian trajectories and groupings
    • 2, 5
    • S. Pellegrini, A. Ess, and L. V. Gool. Improving data association by joint modeling of pedestrian trajectories and groupings. In ECCV, 2010. 2, 5
    • (2010) ECCV
    • Pellegrini, S.1    Ess, A.2    Gool, L.V.3
  • 11
    • 77953225589 scopus 로고    scopus 로고
    • You'll neverwalk alone: Modeling social behavior for multi-target tracking
    • 2
    • S. Pellegrini, A. Ess, K. Schindler, and L. V. Gool. You'll neverwalk alone: Modeling social behavior for multi-target tracking. In ICCV, 2009. 2
    • (2009) ICCV
    • Pellegrini, S.1    Ess, A.2    Schindler, K.3    Gool, L.V.4
  • 12
    • 33845592424 scopus 로고    scopus 로고
    • Multi-object tracking through simultaneous long occlusions and split-merge conditions
    • 1, 2
    • A. G. A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, and W. Hu. Multi-object tracking through simultaneous long occlusions and split-merge conditions. In CVPR, 2006. 1, 2
    • (2006) CVPR
    • Perera, A.G.A.1    Srinivas, C.2    Hoogs, A.3    Brooksby, G.4    Hu, W.5
  • 13
    • 84856635813 scopus 로고    scopus 로고
    • Density-aware person detection and tracking in crowds
    • 2, 4
    • M. Rodriguez, I. Laptev, J. Sivic, and J.-Y. Audibert. Density-aware person detection and tracking in crowds. In ICCV, 2011. 2, 4
    • (2011) ICCV
    • Rodriguez, M.1    Laptev, I.2    Sivic, J.3    Audibert, J.-Y.4
  • 14
    • 77953186524 scopus 로고    scopus 로고
    • Learning pedestrian dynamics from the realworld
    • 2
    • P. Scovanner and M. F. Tappen. Learning pedestrian dynamics from the realworld. In ICCV, 2009. 2
    • (2009) ICCV
    • Scovanner, P.1    Tappen, M.F.2
  • 15
    • 84856667902 scopus 로고    scopus 로고
    • Tracking multiple people under global appearance constraints
    • 1, 2
    • H. B. Shitrit, J. Berclaz, F. Fleuret, and P. Fua. Tracking multiple people under global appearance constraints. In ICCV, 2011. 1, 2
    • (2011) ICCV
    • Shitrit, H.B.1    Berclaz, J.2    Fleuret, F.3    Fua, P.4
  • 16
    • 80052891563 scopus 로고    scopus 로고
    • A stochastic graph evolution framework for robust multi-target tracking
    • 1, 2
    • B. Song, T.-Y. Jeng, E. Staudt, and A. K. Roy-Chowdhury. A stochastic graph evolution framework for robust multi-target tracking. In ECCV, 2010. 1, 2
    • (2010) ECCV
    • Song, B.1    Jeng, T.-Y.2    Staudt, E.3    Roy-Chowdhury, A.K.4
  • 17
    • 77955992287 scopus 로고    scopus 로고
    • An online approach: Learning-semantic-scene-by-tracking and trackingby-learning-semantic-scene
    • 2, 4
    • X. Song, X. Shao, H. Zhao, J. Cui, R. Shibasaki, and H. Zha. An online approach: Learning-semantic-scene-by-tracking and trackingby-learning-semantic- scene. In CVPR, 2010. 2, 4
    • (2010) CVPR
    • Song, X.1    Shao, X.2    Zhao, H.3    Cui, J.4    Shibasaki, R.5    Zha, H.6
  • 18
    • 70450207750 scopus 로고    scopus 로고
    • Multi-object tracking through occlusions by local tracklets filtering and global tracklets association with detection responses
    • 1, 3
    • J. Xing, H. Ai, and S. Lao. Multi-object tracking through occlusions by local tracklets filtering and global tracklets association with detection responses. In CVPR, 2009. 1, 3
    • (2009) CVPR
    • Xing, J.1    Ai, H.2    Lao, S.3
  • 20
    • 80052911158 scopus 로고    scopus 로고
    • Learning affinities and dependencies for multi-target tracking using a crf model
    • 2, 6, 8
    • B. Yang, C. Huang, and R. Nevatia. Learning affinities and dependencies for multi-target tracking using a crf model. In CVPR, 2011. 2, 6, 8
    • (2011) CVPR
    • Yang, B.1    Huang, C.2    Nevatia, R.3
  • 21
    • 77956327939 scopus 로고    scopus 로고
    • Detection driven adaptive multi-cue integration for multiple human tracking
    • 2
    • M. Yang, F. Lv, W. Xu, and Y. Gong. Detection driven adaptive multi-cue integration for multiple human tracking. In ICCV, 2009. 2
    • (2009) ICCV
    • Yang, M.1    Lv, F.2    Xu, W.3    Gong, Y.4
  • 22
    • 84863028588 scopus 로고    scopus 로고
    • Robust unsupervised motion pattern inference from video and applications
    • 2, 4
    • X. Zhao and G. Medioni. Robust unsupervised motion pattern inference from video and applications. In ICCV, 2011. 2, 4
    • (2011) ICCV
    • Zhao, X.1    Medioni, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.