메뉴 건너뛰기




Volumn 2014, Issue , 2014, Pages

A survey on evolutionary algorithm based hybrid intelligence in bioinformatics

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOINFORMATICS; BIOLOGICAL MODEL; EVOLUTIONARY ALGORITHM; HUMAN; HYBRID INTELLIGENCE; MACHINE LEARNING; MOLECULAR DYNAMICS; PARAMETERS; ALGORITHM; ANIMAL; ARTIFICIAL INTELLIGENCE; BIOLOGY; BIOMIMETICS; EVOLUTION; PROCEDURES;

EID: 84897859865     PISSN: 23146133     EISSN: 23146141     Source Type: Journal    
DOI: 10.1155/2014/362738     Document Type: Article
Times cited : (16)

References (58)
  • 1
    • 33747884345 scopus 로고    scopus 로고
    • Gene Expression Omnibus: Microarray Data Storage, Submission, Retrieval, and Analysis
    • DOI 10.1016/S0076-6879(06)11019-8, PII S0076687906110198, DNA Microarrays, Part B: Databases and Statistics
    • Barrett T., Edgar R., Gene expression omnibus: microarray data storage, submission, retrieval, and analysis. Methods in Enzymology 2006 411 352 369 2-s2.0-33747884345 10.1016/S0076-6879(06)11019-8 (Pubitemid 44291435)
    • (2006) Methods in Enzymology , vol.411 , pp. 352-369
    • Barrett, T.1    Edgar, R.2
  • 2
    • 84975795680 scopus 로고    scopus 로고
    • An integrated map of genetic variation from 1, 092 human genomes
    • Abecasis G. R., Auton A., Brooks L. D., An integrated map of genetic variation from 1, 092 human genomes. Nature 2012 491 7422 56 65
    • (2012) Nature , vol.491 , Issue.7422 , pp. 56-65
    • Abecasis, G.R.1    Auton, A.2    Brooks, L.D.3
  • 5
    • 84861843896 scopus 로고    scopus 로고
    • Identifying dysregulated pathways in cancers from pathway interaction networks
    • 13126
    • Liu K. Q., Liu Z. P., Hao J. K., Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinformatics 2012 13, article 126
    • (2012) BMC Bioinformatics
    • Liu, K.Q.1    Liu, Z.P.2    Hao, J.K.3
  • 7
    • 84874807298 scopus 로고    scopus 로고
    • Conserved host-pathogen PPIs. Globally conserved inter-species bacterial PPIs based conserved host-pathogen interactome derived novel target in C. Pseudotuberculosis, C. Diphtheriae, M. Tuberculosis, C. Ulcerans, Y. Pestis, and E. Coli targeted by Piper betel compounds
    • Barh D., Gupta K., Jain N., Conserved host-pathogen PPIs. Globally conserved inter-species bacterial PPIs based conserved host-pathogen interactome derived novel target in C. pseudotuberculosis, C. diphtheriae, M. tuberculosis, C. ulcerans, Y. pestis, and E. coli targeted by Piper betel compounds. Integrative Biology 2013 5 3 495 509
    • (2013) Integrative Biology , vol.5 , Issue.3 , pp. 495-509
    • Barh, D.1    Gupta, K.2    Jain, N.3
  • 8
    • 47249146126 scopus 로고    scopus 로고
    • Drug target identification using side-effect similarity
    • DOI 10.1126/science.1158140
    • Campillos M., Kuhn M., Gavin A.-C., Jensen L. J., Bork P., Drug target identification using side-effect similarity. Science 2008 321 5886 263 266 2-s2.0-47249146126 10.1126/science.1158140 (Pubitemid 351989100)
    • (2008) Science , vol.321 , Issue.5886 , pp. 263-266
    • Campillos, M.1    Kuhn, M.2    Gavin, A.-C.3    Jensen, L.J.4    Bork, P.5
  • 9
    • 44349093750 scopus 로고    scopus 로고
    • Uncovering signal transduction networks from high-throughput data by integer linear programming
    • DOI 10.1093/nar/gkn145
    • Zhao X.-M., Wang R.-S., Chen L., Aihara K., Uncovering signal transduction networks from high-throughput data by integer linear programming. Nucleic Acids Research 2008 36 9, article e48 2-s2.0-44349093750 10.1093/nar/gkn145 (Pubitemid 351737207)
    • (2008) Nucleic Acids Research , vol.36 , Issue.9
    • Zhao, X.-M.1    Wang, R.-S.2    Chen, L.3    Aihara, K.4
  • 10
    • 0001044037 scopus 로고
    • Simulation of genetic systems by automatic digital computers. I. Introduction
    • Fraser A. S., Simulation of genetic systems by automatic digital computers. I. Introduction. Australian Journal of Biological Sciences 1957 10 484 491
    • (1957) Australian Journal of Biological Sciences , vol.10 , pp. 484-491
    • Fraser, A.S.1
  • 15
    • 0142000477 scopus 로고    scopus 로고
    • Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces
    • Storn R., Price K., Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 1997 11 4 341 359 2-s2.0-0142000477 (Pubitemid 127502202)
    • (1997) Journal of Global Optimization , vol.11 , Issue.4 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 16
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method
    • Li L., Weinberg C. R., Darden T. A., Pedersen L. G., Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 2002 17 12 1131 1142 2-s2.0-0036139278 (Pubitemid 34041145)
    • (2002) Bioinformatics , vol.17 , Issue.12 , pp. 1131-1142
    • Li, L.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 17
    • 25444528447 scopus 로고    scopus 로고
    • Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes
    • DOI 10.1186/1471-2105-6-148
    • Jirapech-Umpai T., Aitken S., Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes. BMC Bioinformatics 2005 6, article 148 2-s2.0-25444528447 10.1186/1471-2105-6- 148 (Pubitemid 41357999)
    • (2005) BMC Bioinformatics , vol.6 , pp. 148
    • Jirapech-Umpai, T.1    Aitken, S.2
  • 18
    • 34250092221 scopus 로고
    • Genetic algorithms and machine learning
    • Goldberg D. E., Holland J. H., Genetic algorithms and machine learning. Machine Learning 1988 3 2 95 99
    • (1988) Machine Learning , vol.3 , Issue.2 , pp. 95-99
    • Goldberg, D.E.1    Holland, J.H.2
  • 19
    • 27844458593 scopus 로고    scopus 로고
    • Efficient huge-scale feature selection with speciated genetic algorithm
    • DOI 10.1016/j.patrec.2005.07.009, PII S0167865505002035
    • Hong J.-H., Cho S.-B., Efficient huge-scale feature selection with speciated genetic algorithm. Pattern Recognition Letters 2006 27 2 143 150 2-s2.0-27844458593 10.1016/j.patrec.2005.07.009 (Pubitemid 41659800)
    • (2006) Pattern Recognition Letters , vol.27 , Issue.2 , pp. 143-150
    • Hong, J.-H.1    Cho, S.-B.2
  • 20
    • 84878374114 scopus 로고    scopus 로고
    • Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods
    • 14170
    • Chang S. W., Abdul-Kareem S., Merican A. F., Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods. BMC Bioinformatics 2013 14, article 170
    • (2013) BMC Bioinformatics
    • Chang, S.W.1    Abdul-Kareem, S.2    Merican, A.F.3
  • 22
    • 0346373654 scopus 로고    scopus 로고
    • Selecting a Maximally Informative Set of Single-Nucleotide Polymorphisms for Association Analyses Using Linkage Disequilibrium
    • DOI 10.1086/381000
    • Carlson C. S., Eberle M. A., Rieder M. J., Yi Q., Kruglyak L., Nickerson D. A., Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. American Journal of Human Genetics 2004 74 1 106 120 2-s2.0-0346373654 10.1086/381000 (Pubitemid 38085242)
    • (2004) American Journal of Human Genetics , vol.74 , Issue.1 , pp. 106-120
    • Carlson, C.S.1    Eberle, M.A.2    Rieder, M.J.3    Yi, Q.4    Kruglyak, L.5    Nickerson, D.A.6
  • 23
    • 0141855279 scopus 로고    scopus 로고
    • A comprehensive approach to the analysis of matrix-assisted laser desorption/ionization-time of flight proteomics spectra from serum samples
    • DOI 10.1002/pmic.200300522
    • Baggerly K. A., Morris J. S., Wang J., Gold D., Xiao L.-C., Coombes K. R., A comprehensive approach to the analysis of matrix-assisted laser desorption/ionization-time of flight proteomics spectra from serum samples. Proteomics 2003 3 9 1667 1672 2-s2.0-0141855279 10.1002/pmic.200300522 (Pubitemid 37129810)
    • (2003) Proteomics , vol.3 , Issue.9 , pp. 1667-1672
    • Baggerly, K.A.1    Morris, J.S.2    Wang, J.3    Gold, D.4    Xiao, L.-C.5    Coombes, K.R.6
  • 25
    • 4444234496 scopus 로고    scopus 로고
    • Data mining techniques for cancer detection using serum proteomic profiling
    • DOI 10.1016/j.artmed.2004.03.006, PII S0933365704000545
    • Li L., Tang H., Wu Z., Gong J., Gruidl M., Zou J., Tockman M., Clark R. A., Data mining techniques for cancer detection using serum proteomic profiling. Artificial Intelligence in Medicine 2004 32 2 71 83 2-s2.0-4444234496 10.1016/j.artmed.2004.03.006 (Pubitemid 39201347)
    • (2004) Artificial Intelligence in Medicine , vol.32 , Issue.2 , pp. 71-83
    • Li, L.1    Tang, H.2    Wu, Z.3    Gong, J.4    Gruidl, M.5    Zou, J.6    Tockman, M.7    Clark, R.A.8
  • 26
    • 26944462332 scopus 로고    scopus 로고
    • A novel approach to extracting features from motif content and protein composition for protein sequence classification
    • DOI 10.1016/j.neunet.2005.07.002, PII S0893608005001620, Neural Networks and Kernal Methods for Structured Domains
    • Zhao X.-M., Cheung Y.-M., Huang D.-S., A novel approach to extracting features from motif content and protein composition for protein sequence classification. Neural Networks 2005 18 8 1019 1028 2-s2.0-26944462332 10.1016/j.neunet.2005.07.002 (Pubitemid 41476336)
    • (2005) Neural Networks , vol.18 , Issue.8 , pp. 1019-1028
    • Zhao, X.-M.1    Cheung, Y.-M.2    Huang, D.-S.3
  • 28
    • 20844445085 scopus 로고    scopus 로고
    • A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset
    • DOI 10.1016/j.ygeno.2004.09.007, PII S088875430400271X
    • Li L., Jiang W., Li X., Moser K. L., Guo Z., Du L., Wang Q., Topol E. J., Wang Q., Rao S., A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset. Genomics 2005 85 1 16 23 2-s2.0-20844445085 10.1016/j.ygeno.2004.09.007 (Pubitemid 39655687)
    • (2005) Genomics , vol.85 , Issue.1 , pp. 16-23
    • Li, L.1    Jiang, W.2    Li, X.3    Moser, K.L.4    Guo, Z.5    Du, L.6    Wang, Q.7    Topol, E.J.8    Wang, Q.9    Rao, S.10
  • 29
    • 34548458988 scopus 로고    scopus 로고
    • ProLoc: Prediction of protein subnuclear localization using SVM with automatic selection from physicochemical composition features
    • DOI 10.1016/j.biosystems.2007.01.001, PII S0303264707000032
    • Huang W.-L., Tung C.-W., Huang H.-L., Hwang S.-F., Ho S.-Y., ProLoc: prediction of protein subnuclear localization using SVM with automatic selection from physicochemical composition features. BioSystems 2007 90 2 573 581 2-s2.0-34548458988 10.1016/j.biosystems.2007.01.001 (Pubitemid 47362472)
    • (2007) BioSystems , vol.90 , Issue.2 , pp. 573-581
    • Huang, W.-L.1    Tung, C.-W.2    Huang, H.-L.3    Hwang, S.-F.4    Ho, S.-Y.5
  • 30
    • 84872495357 scopus 로고    scopus 로고
    • Genome-wide enhancer prediction from epigenetic signatures using genetic algorithm-optimized support vector machines
    • 10.1093/nar/gks149
    • Fernández M., Miranda-Saavedra D., Genome-wide enhancer prediction from epigenetic signatures using genetic algorithm-optimized support vector machines. Nucleic Acids Research 2012 40 10 e77 10.1093/nar/gks149
    • (2012) Nucleic Acids Research , vol.40 , Issue.10
    • Fernández, M.1    Miranda-Saavedra, D.2
  • 31
    • 2942541354 scopus 로고    scopus 로고
    • Feature selection for splice site prediction: A new method using EDA-based feature ranking
    • DOI 10.1186/1471-2105-5-64
    • Saeys Y., Degroeve S., Aeyels D., Rouzé P., Van de Peer Y., Feature selection for splice site prediction: a new method using EDA-based feature ranking. BMC Bioinformatics 2004 5, article 64 2-s2.0-2942541354 10.1186/1471-2105-5-64 (Pubitemid 38751272)
    • (2004) BMC Bioinformatics , vol.5 , pp. 64
    • Saeys, Y.1    Degroeve, S.2    Aeyels, D.3    Rouze, P.4    Van De Peer, Y.5
  • 32
    • 69149109819 scopus 로고    scopus 로고
    • A novel ACO-GA hybrid algorithm for feature selection in protein function prediction
    • 2-s2.0-69149109819 10.1016/j.eswa.2009.04.023
    • Nemati S., Basiri M. E., Ghasem-Aghaee N., Aghdam M. H., A novel ACO-GA hybrid algorithm for feature selection in protein function prediction. Expert Systems with Applications 2009 36 10 12086 12094 2-s2.0-69149109819 10.1016/j.eswa.2009.04.023
    • (2009) Expert Systems with Applications , vol.36 , Issue.10 , pp. 12086-12094
    • Nemati, S.1    Basiri, M.E.2    Ghasem-Aghaee, N.3    Aghdam, M.H.4
  • 34
    • 78751647229 scopus 로고    scopus 로고
    • Parameter estimation in systems biology models using spline approximation
    • 2-s2.0-78751647229 10.1186/1752-0509-5-14
    • Zhan C., Yeung L. F., Parameter estimation in systems biology models using spline approximation. BMC Systems Biology 2011 5, article 14 2-s2.0-78751647229 10.1186/1752-0509-5-14
    • (2011) BMC Systems Biology , vol.514
    • Zhan, C.1    Yeung, L.F.2
  • 35
    • 58849106769 scopus 로고    scopus 로고
    • Systems biology: Parameter estimation for biochemical models
    • 2-s2.0-58849106769 10.1111/j.1742-4658.2008.06844.x
    • Ashyraliyev M., Fomekong-Nanfack Y., Kaandorp J. A., Blom J. G., Systems biology: parameter estimation for biochemical models. FEBS Journal 2009 276 4 886 902 2-s2.0-58849106769 10.1111/j.1742-4658.2008.06844.x
    • (2009) FEBS Journal , vol.276 , Issue.4 , pp. 886-902
    • Ashyraliyev, M.1    Fomekong-Nanfack, Y.2    Kaandorp, J.A.3    Blom, J.G.4
  • 36
    • 58149232578 scopus 로고    scopus 로고
    • Parameter estimation and optimal experimental design
    • 2-s2.0-58149232578 10.1042/BSE0450195
    • Banga J. R., Balsa-Canto E., Parameter estimation and optimal experimental design. Essays in Biochemistry 2008 45 195 209 2-s2.0-58149232578 10.1042/BSE0450195
    • (2008) Essays in Biochemistry , vol.45 , pp. 195-209
    • Banga, J.R.1    Balsa-Canto, E.2
  • 37
    • 0242574982 scopus 로고    scopus 로고
    • Parameter estimation in biochemical pathways: A comparison of global optimization methods
    • DOI 10.1101/gr.1262503
    • Moles C. G., Mendes P., Banga J. R., Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Research 2003 13 11 2467 2474 2-s2.0-0242574982 10.1101/gr.1262503 (Pubitemid 37428271)
    • (2003) Genome Research , vol.13 , Issue.11 , pp. 2467-2474
    • Moles, C.G.1    Mendes, P.2    Banga, J.R.3
  • 38
    • 84877970243 scopus 로고    scopus 로고
    • SS-mPMG and SS-GA: Tools for finding pathways and dynamic simulation of metabolic networks
    • 10.1093/pcp/pct052
    • Katsuragi T., Ono N., Yasumoto K., SS-mPMG and SS-GA: tools for finding pathways and dynamic simulation of metabolic networks. Plant Cell Physiology 2013 54 5 728 739 10.1093/pcp/pct052
    • (2013) Plant Cell Physiology , vol.54 , Issue.5 , pp. 728-739
    • Katsuragi, T.1    Ono, N.2    Yasumoto, K.3
  • 39
    • 84874938709 scopus 로고    scopus 로고
    • Estimate hidden dynamic profiles of siRNA effect on apoptosis
    • Ueda T., Tominaga D., Araki N., Estimate hidden dynamic profiles of siRNA effect on apoptosis. BMC Bioinformatics 2013 14, article 97
    • (2013) BMC Bioinformatics , vol.1497
    • Ueda, T.1    Tominaga, D.2    Araki, N.3
  • 40
    • 84874601089 scopus 로고    scopus 로고
    • An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters
    • e56310
    • Abdullah A., Deris S., Anwar S., Arjunan S. N., An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters. PloS One 2013 8 3 e56310
    • (2013) PloS One , vol.8 , Issue.3
    • Abdullah, A.1    Deris, S.2    Anwar, S.3    Arjunan, S.N.4
  • 43
    • 0037461033 scopus 로고    scopus 로고
    • Dynamics modeling of genetic networks using genetic algorithm and S-system
    • DOI 10.1093/bioinformatics/btg027
    • Kikuchi S., Tominaga D., Arita M., Takahashi K., Tomita M., Dynamics modeling of genetic networks using genetic algorithm and S-system. Bioinformatics 2003 19 5 643 650 2-s2.0-0037461033 10.1093/bioinformatics/btg027 (Pubitemid 36417059)
    • (2003) Bioinformatics , vol.19 , Issue.5 , pp. 643-650
    • Kikuchi, S.1    Tominaga, D.2    Arita, M.3    Takahashi, K.4    Tomita, M.5
  • 45
    • 33748530630 scopus 로고    scopus 로고
    • Reverse engineering genetic networks using evolutionary computation
    • 2-s2.0-33748530630
    • Noman N., Iba H., Reverse engineering genetic networks using evolutionary computation. Genome Informatics 2005 16 2 205 214 2-s2.0-33748530630
    • (2005) Genome Informatics , vol.16 , Issue.2 , pp. 205-214
    • Noman, N.1    Iba, H.2
  • 46
    • 0009015060 scopus 로고
    • On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms
    • Moscato P., On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech Concurrent Computation Program 1989 826
    • (1989) Caltech Concurrent Computation Program , Issue.826
    • Moscato, P.1
  • 47
    • 84879050935 scopus 로고    scopus 로고
    • Incorporating time-delays in S-System model for reverse engineering genetic networks
    • 14196 10.1186/1471-2105-14-196
    • Chowdhury A. R., Chetty M., Vinh N. X., Incorporating time-delays in S-System model for reverse engineering genetic networks. BMC Bioinformatics 2013 14, article 196 10.1186/1471-2105-14-196
    • (2013) BMC Bioinformatics
    • Chowdhury, A.R.1    Chetty, M.2    Vinh, N.X.3
  • 48
    • 0036627676 scopus 로고    scopus 로고
    • Reverse engineering of regulatory networks: Simulation studies on a genetic algorithm approach for ranking hypotheses
    • DOI 10.1016/S0303-2647(02)00019-9, PII S0303264702000199
    • Repsilber D., Liljenström H., Andersson S. G. E., Reverse engineering of regulatory networks: simulation studies on a genetic algorithm approach for ranking hypotheses. BioSystems 2002 66 1-2 31 41 2-s2.0-0036627676 10.1016/S0303-2647(02)00019-9 (Pubitemid 36169922)
    • (2002) BioSystems , vol.66 , Issue.1-2 , pp. 31-41
    • Repsilber, D.1    Liljenstrom, H.2    Andersson, S.G.E.3
  • 50
    • 71749121782 scopus 로고    scopus 로고
    • A multi-objective differential evolutionary approach toward more stable gene regulatory networks
    • 2-s2.0-71749121782 10.1016/j.biosystems.2009.09.002
    • Esmaeili A., Jacob C., A multi-objective differential evolutionary approach toward more stable gene regulatory networks. BioSystems 2009 98 3 127 136 2-s2.0-71749121782 10.1016/j.biosystems.2009.09.002
    • (2009) BioSystems , vol.98 , Issue.3 , pp. 127-136
    • Esmaeili, A.1    Jacob, C.2
  • 51
    • 84867537553 scopus 로고    scopus 로고
    • CellNOptR: A flexible toolkit to train protein signaling networks to data using multiple logic formalisms
    • Terfve C., Cokelaer T., Henriques D., CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Systems Biology 2012 6, article 133
    • (2012) BMC Systems Biology , vol.6133
    • Terfve, C.1    Cokelaer, T.2    Henriques, D.3
  • 52
    • 84871764162 scopus 로고    scopus 로고
    • Predicting missing expression values in gene regulatory networks using a discrete logic modeling optimization guided by network stable states
    • Article E8 10.1093/nar/gks785
    • Crespo I., Krishna A., Le Bechec A., del Sol A., Predicting missing expression values in gene regulatory networks using a discrete logic modeling optimization guided by network stable states. Nucleic Acids Research 2013 41 1, article e8 10.1093/nar/gks785
    • (2013) Nucleic Acids Research , vol.41 , Issue.1
    • Crespo, I.1    Krishna, A.2    Le Bechec, A.3    Del Sol, A.4
  • 53
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • DOI 10.1093/bioinformatics/bth448
    • Yu J., Smith V. A., Wang P. P., Hartemink A. J., Jarvis E. D., Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 2004 20 18 3594 3603 2-s2.0-12344259602 10.1093/bioinformatics/bth448 (Pubitemid 40136795)
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3    Hartemink, A.J.4    Jarvis, E.D.5
  • 58
    • 33747876155 scopus 로고    scopus 로고
    • A decompositional approach to parameter estimation in pathway modeling: A case study of the Akt and MAPK pathways and their crosstalk
    • DOI 10.1093/bioinformatics/btl264
    • Koh G., Teong H. F. C., Clément M.-V., Hsu D., Thiagarajan P. S., A decompositional approach to parameter estimation in pathway modeling: a case study of the Akt and MAPK pathways and their crosstalk. Bioinformatics 2006 22 14 e271 e280 2-s2.0-33747876155 10.1093/bioinformatics/btl264 (Pubitemid 44288296)
    • (2006) Bioinformatics , vol.22 , Issue.14
    • Koh, G.1    Teong, H.F.C.2    Clement, M.-V.3    Hsu, D.4    Thiagarajan, P.S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.