메뉴 건너뛰기




Volumn , Issue , 2013, Pages 83-90

The max-min high-order dynamic Bayesian network learning for identifying gene regulatory networks from time-series microarray data

Author keywords

Dynamic Bayesian Network; Gene Regulatory Networks; High Order Relationships; Max Min Heuristic

Indexed keywords

BAYESIAN TECHNIQUES; DYNAMIC BAYESIAN NETWORKS; GENE REGULATORY NETWORKS; GENETIC REGULATORY NETWORKS; HIGH-ORDER; HIGH-ORDER DYNAMICS; MAX-MIN; POTENTIAL STRUCTURE;

EID: 84885048737     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CIBCB.2013.6595392     Document Type: Conference Paper
Times cited : (13)

References (19)
  • 3
    • 70349858154 scopus 로고    scopus 로고
    • Using higher-order dynamic bayesian networks to model periodic data from the circadian clock of arabidopsis thaliana
    • R. Daly, K. Edwards, J.S.O'Neill, S. Aitken, A. Millar, and M. Girolami, "Using higher-order dynamic bayesian networks to model periodic data from the circadian clock of arabidopsis thaliana," LNCS, vol. 5780, pp. 67-78, 2009.
    • (2009) LNCS , vol.5780 , pp. 67-78
    • Daly, R.1    Edwards, K.2    O'neill, J.S.3    Aitken, S.4    Millar, A.5    Girolami, M.6
  • 4
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing bayesian network structure learning algorithm
    • I. Tsamardinos, L. Brown, , and C. Aliferis, "The max-min hill-climbing bayesian network structure learning algorithm," Machine Learning, vol. 65, pp. 31-78, 2006.
    • (2006) Machine Learning , vol.65 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.2    Aliferis, C.3
  • 7
    • 78449303632 scopus 로고    scopus 로고
    • Modeling multiple time units delayed gene regulatory network using dynamic bayesian network
    • X. Xing and D. Wu, "Modeling multiple time units delayed gene regulatory network using dynamic bayesian network," in Proc. ICDMW, IEEE. Hong Kong: IEEE Press, 2010, pp. 190-195.
    • (2010) Proc. ICDMW, IEEE. Hong Kong: IEEE Press , pp. 190-195
    • Xing, X.1    Wu, D.2
  • 9
    • 79959435843 scopus 로고    scopus 로고
    • Gene regulatory networks with variable-order dynamic bayesian networks
    • IEEE. Barcelona, Spain: IEEE Press
    • J. Rajapakse and I. Chaturvedi, "Gene regulatory networks with variable-order dynamic bayesian networks," in Proc. IJCNN, IEEE. Barcelona, Spain: IEEE Press, 2010, pp. 1-5.
    • (2010) Proc. IJCNN , pp. 1-5
    • Rajapakse, J.1    Chaturvedi, I.2
  • 10
    • 77956342095 scopus 로고    scopus 로고
    • Building gene networks with time-delayed regulations
    • I. Chaturvedi and J. Rajapakse, "Building gene networks with time-delayed regulations," Pattern Recognition Letters, vol. 31, no. 14, pp. 2133-2137, 2010.
    • (2010) Pattern Recognition Letters , vol.31 , Issue.14 , pp. 2133-2137
    • Chaturvedi, I.1    Rajapakse, J.2
  • 12
    • 34249761849 scopus 로고
    • Learning bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. Chickering, "Learning bayesian networks: The combination of knowledge and statistical data," Machine Learning, vol. 20, pp. 197-243, 1995.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 13
    • 0001926525 scopus 로고
    • Theory refinement on bayesian networks
    • W. Buntine, "Theory refinement on bayesian networks," in Proc. UAI. Morgan Kaufmann, 1991, pp. 52-60.
    • (1991) Proc. UAI. Morgan Kaufmann , pp. 52-60
    • Buntine, W.1
  • 14
    • 34249832377 scopus 로고
    • A bayesian method for the induction of probabilistic networks from data
    • G. Cooper and E. Herskovits, "A bayesian method for the induction of probabilistic networks from data," Machine Learning, vol. 9, pp. 309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 15
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz, "Estimating the dimension of a model," Ann. Stat., vol. 6, pp. 461-464, 1978.
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 16
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic bayesian network (dbn) approach for indentifying gene regulatory networks from time course microarray data
    • M. Zou and S. Conzen, "A new dynamic bayesian network (dbn) approach for indentifying gene regulatory networks from time course microarray data," Bioinformatics, vol. 21, no. 1, pp. 71-79, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.2
  • 18
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks
    • D. Husmeier, "Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks," Bioinformatics, vol. 19, no. 17, pp. 2271-2282, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 19
    • 27944487902 scopus 로고    scopus 로고
    • Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes
    • B. Tu, A. Kudlicki, M. Rowicka, and S. McKnight, "Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes," Science, vol. 310, pp. 1152-1158, 2005. of Canada
    • (2005) Science , vol.310 , pp. 1152-1158
    • Tu, B.1    Kudlicki, A.2    Rowicka, M.3    McKnight, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.