-
3
-
-
70349858154
-
Using higher-order dynamic bayesian networks to model periodic data from the circadian clock of arabidopsis thaliana
-
R. Daly, K. Edwards, J.S.O'Neill, S. Aitken, A. Millar, and M. Girolami, "Using higher-order dynamic bayesian networks to model periodic data from the circadian clock of arabidopsis thaliana," LNCS, vol. 5780, pp. 67-78, 2009.
-
(2009)
LNCS
, vol.5780
, pp. 67-78
-
-
Daly, R.1
Edwards, K.2
O'neill, J.S.3
Aitken, S.4
Millar, A.5
Girolami, M.6
-
4
-
-
33746035971
-
The max-min hill-climbing bayesian network structure learning algorithm
-
I. Tsamardinos, L. Brown, , and C. Aliferis, "The max-min hill-climbing bayesian network structure learning algorithm," Machine Learning, vol. 65, pp. 31-78, 2006.
-
(2006)
Machine Learning
, vol.65
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.2
Aliferis, C.3
-
5
-
-
0033707946
-
Using bayesian networks to analyze expression data
-
N. Friedman, M. Linial, I. Nachman, and D. Pe'er, "Using bayesian networks to analyze expression data," Journal of Computational Biology, vol. 7, pp. 601-620, 2000.
-
(2000)
Journal of Computational Biology
, vol.7
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'er, D.4
-
6
-
-
0000854197
-
Learning the structure of dynamic probabilistic networks
-
N. Friedman, K. Murphy, and S. Russell, "Learning the structure of dynamic probabilistic networks," in Proc. The 14th Annual Conference on Uncertainty in Artificial Intelligence, 1998, pp. 139-147.
-
(1998)
Proc. The 14th Annual Conference on Uncertainty in Artificial Intelligence
, pp. 139-147
-
-
Friedman, N.1
Murphy, K.2
Russell, S.3
-
7
-
-
78449303632
-
Modeling multiple time units delayed gene regulatory network using dynamic bayesian network
-
X. Xing and D. Wu, "Modeling multiple time units delayed gene regulatory network using dynamic bayesian network," in Proc. ICDMW, IEEE. Hong Kong: IEEE Press, 2010, pp. 190-195.
-
(2010)
Proc. ICDMW, IEEE. Hong Kong: IEEE Press
, pp. 190-195
-
-
Xing, X.1
Wu, D.2
-
8
-
-
0013288412
-
-
Ph. D. dissertation, Berkley, CA
-
K. Murphy, "Dynamic bayesian networks: Representation, inference and learning," Ph.D. dissertation, Berkley, CA, 2002.
-
(2002)
Dynamic Bayesian Networks: Representation, Inference and Learning
-
-
Murphy, K.1
-
9
-
-
79959435843
-
Gene regulatory networks with variable-order dynamic bayesian networks
-
IEEE. Barcelona, Spain: IEEE Press
-
J. Rajapakse and I. Chaturvedi, "Gene regulatory networks with variable-order dynamic bayesian networks," in Proc. IJCNN, IEEE. Barcelona, Spain: IEEE Press, 2010, pp. 1-5.
-
(2010)
Proc. IJCNN
, pp. 1-5
-
-
Rajapakse, J.1
Chaturvedi, I.2
-
10
-
-
77956342095
-
Building gene networks with time-delayed regulations
-
I. Chaturvedi and J. Rajapakse, "Building gene networks with time-delayed regulations," Pattern Recognition Letters, vol. 31, no. 14, pp. 2133-2137, 2010.
-
(2010)
Pattern Recognition Letters
, vol.31
, Issue.14
, pp. 2133-2137
-
-
Chaturvedi, I.1
Rajapakse, J.2
-
11
-
-
0002370418
-
A tutorial on learning with bayesian networks
-
M. Jordan, Ed. Cambridge, MA: MIT, , ch. 11
-
D. Heckerman, "A tutorial on learning with bayesian networks," in Learning in Graphical Models, ser. Adaptive Computation and Machine Learning series, M. Jordan, Ed. Cambridge, MA: MIT, 1998, ch. 11, pp. 301-354.
-
(1998)
Learning in Graphical Models, Ser. Adaptive Computation and Machine Learning Series
, pp. 301-354
-
-
Heckerman, D.1
-
12
-
-
34249761849
-
Learning bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger, and D. Chickering, "Learning bayesian networks: The combination of knowledge and statistical data," Machine Learning, vol. 20, pp. 197-243, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
13
-
-
0001926525
-
Theory refinement on bayesian networks
-
W. Buntine, "Theory refinement on bayesian networks," in Proc. UAI. Morgan Kaufmann, 1991, pp. 52-60.
-
(1991)
Proc. UAI. Morgan Kaufmann
, pp. 52-60
-
-
Buntine, W.1
-
14
-
-
34249832377
-
A bayesian method for the induction of probabilistic networks from data
-
G. Cooper and E. Herskovits, "A bayesian method for the induction of probabilistic networks from data," Machine Learning, vol. 9, pp. 309-347, 1992.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.1
Herskovits, E.2
-
15
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz, "Estimating the dimension of a model," Ann. Stat., vol. 6, pp. 461-464, 1978.
-
(1978)
Ann. Stat.
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
16
-
-
12744261506
-
A new dynamic bayesian network (dbn) approach for indentifying gene regulatory networks from time course microarray data
-
M. Zou and S. Conzen, "A new dynamic bayesian network (dbn) approach for indentifying gene regulatory networks from time course microarray data," Bioinformatics, vol. 21, no. 1, pp. 71-79, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.1
, pp. 71-79
-
-
Zou, M.1
Conzen, S.2
-
17
-
-
0003614273
-
-
2nd ed. Cambridge, MA: MIT
-
P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and Search, 2nd ed. Cambridge, MA: MIT, 2001.
-
(2001)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
18
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks
-
D. Husmeier, "Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks," Bioinformatics, vol. 19, no. 17, pp. 2271-2282, 2003.
-
(2003)
Bioinformatics
, vol.19
, Issue.17
, pp. 2271-2282
-
-
Husmeier, D.1
-
19
-
-
27944487902
-
Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes
-
B. Tu, A. Kudlicki, M. Rowicka, and S. McKnight, "Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes," Science, vol. 310, pp. 1152-1158, 2005. of Canada
-
(2005)
Science
, vol.310
, pp. 1152-1158
-
-
Tu, B.1
Kudlicki, A.2
Rowicka, M.3
McKnight, S.4
|