메뉴 건너뛰기




Volumn 15, Issue 1, 2014, Pages

Gene selection for cancer identification: A decision tree model empowered by particle swarm optimization algorithm

Author keywords

Cancer; Decision tree classifier; Gene expression; Particle swarm optimization

Indexed keywords

ARTIFICIAL IMMUNE RECOGNITION SYSTEM; BACK PROPAGATION NEURAL NETWORKS; BENCHMARK CLASSIFICATION; CANCER; COMPUTATIONAL INTELLIGENCE METHODS; DECISION TREE CLASSIFIERS; DECISION TREE MODELING; PARTICLE SWARM OPTIMIZATION ALGORITHM;

EID: 84897645454     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-15-49     Document Type: Article
Times cited : (128)

References (44)
  • 1
    • 63149139219 scopus 로고    scopus 로고
    • Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms
    • Alba E, et al. Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. IEEE C Evol Computat 2007, 9:284-290.
    • (2007) IEEE C Evol Computat , vol.9 , pp. 284-290
    • Alba, E.1
  • 2
    • 45749096693 scopus 로고    scopus 로고
    • Gene selection using hybrid particle swarm optimization and genetic algorithm
    • Li S, Wu X, Tan M. Gene selection using hybrid particle swarm optimization and genetic algorithm. Soft Comput 2008, 12:1039-1048.
    • (2008) Soft Comput , vol.12 , pp. 1039-1048
    • Li, S.1    Wu, X.2    Tan, M.3
  • 3
    • 9644265275 scopus 로고    scopus 로고
    • A feature selection technique for classificatory analysis
    • Ahmad A, Dey L. A feature selection technique for classificatory analysis. Pattern Recogn Lett 2005, 26:43-56.
    • (2005) Pattern Recogn Lett , vol.26 , pp. 43-56
    • Ahmad, A.1    Dey, L.2
  • 4
    • 0042388208 scopus 로고    scopus 로고
    • RankGene: identification of diagnostic genes based on expression data
    • 10.1093/bioinformatics/btg179, 12912841
    • Su Y, Murali TM, et al. RankGene: identification of diagnostic genes based on expression data. Bioinformatics 2003, 19:1578-1579. 10.1093/bioinformatics/btg179, 12912841.
    • (2003) Bioinformatics , vol.19 , pp. 1578-1579
    • Su, Y.1    Murali, T.M.2
  • 5
    • 0031381525 scopus 로고    scopus 로고
    • Wrapper for feature subset selection
    • Kahavi R, John GH. Wrapper for feature subset selection. Artif Intell 1997, 97:273-324.
    • (1997) Artif Intell , vol.97 , pp. 273-324
    • Kahavi, R.1    John, G.H.2
  • 6
    • 2542596956 scopus 로고    scopus 로고
    • Gene mining: a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling
    • 10.1093/nar/gkh563, 419591, 15148356
    • Li X, Rao S, Wang Y, Gong B. Gene mining: a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling. Nucleic Acids Res 2004, 32:2685-2694. 10.1093/nar/gkh563, 419591, 15148356.
    • (2004) Nucleic Acids Res , vol.32 , pp. 2685-2694
    • Li, X.1    Rao, S.2    Wang, Y.3    Gong, B.4
  • 7
    • 26944462332 scopus 로고    scopus 로고
    • A novel approach to extracting features from motif content and protein composition for protein sequence classification
    • 10.1016/j.neunet.2005.07.002, 16153801
    • Zhao XM, Cheung YM, Huang DS. A novel approach to extracting features from motif content and protein composition for protein sequence classification. Neural Netw 2005, 18:1019-1028. 10.1016/j.neunet.2005.07.002, 16153801.
    • (2005) Neural Netw , vol.18 , pp. 1019-1028
    • Zhao, X.M.1    Cheung, Y.M.2    Huang, D.S.3
  • 8
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data by using support vector machines
    • 10.1073/pnas.97.1.262, 26651, 10618406
    • Brown MP, et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci U S A 2000, 97:262-267. 10.1073/pnas.97.1.262, 26651, 10618406.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 262-267
    • Brown, M.P.1
  • 9
    • 47049127967 scopus 로고    scopus 로고
    • Sparse kernel methods for high-dimensional survival data
    • 10.1093/bioinformatics/btn253, 18515276
    • Evers L, Messow CM. Sparse kernel methods for high-dimensional survival data. Bioinformatics 2008, 24:1632-1638. 10.1093/bioinformatics/btn253, 18515276.
    • (2008) Bioinformatics , vol.24 , pp. 1632-1638
    • Evers, L.1    Messow, C.M.2
  • 10
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach
    • 10.1006/jmbi.2001.4580, 11327775
    • Hua S, Sun Z. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J Mol Biol 2001, 308:397-407. 10.1006/jmbi.2001.4580, 11327775.
    • (2001) J Mol Biol , vol.308 , pp. 397-407
    • Hua, S.1    Sun, Z.2
  • 11
    • 65449183360 scopus 로고    scopus 로고
    • A kernel-based approach for detecting outliers of high-dimensional biological data
    • Oh JH, Gao J. A kernel-based approach for detecting outliers of high-dimensional biological data. BMC Bioinforma 2009, 10:S7.
    • (2009) BMC Bioinforma , vol.10
    • Oh, J.H.1    Gao, J.2
  • 12
    • 2942541354 scopus 로고    scopus 로고
    • Feature selection for splice site prediction: a new method using EDA-based feature ranking
    • Saeys Y, et al. Feature selection for splice site prediction: a new method using EDA-based feature ranking. BMC Bioinforma 2004, 5:64.
    • (2004) BMC Bioinforma , vol.5 , pp. 64
    • Saeys, Y.1
  • 13
    • 60849121073 scopus 로고    scopus 로고
    • Network-based support vector machine for classification of microarray samples
    • Zhu Y, Shen X, Pan W. Network-based support vector machine for classification of microarray samples. BMC Bioinforma 2009, 10:S21.
    • (2009) BMC Bioinforma , vol.10
    • Zhu, Y.1    Shen, X.2    Pan, W.3
  • 14
    • 0035664710 scopus 로고    scopus 로고
    • Gene assessment and sample classification for gene expression data using a genetic algorithm/k-nearest neighbor method
    • Li L, Darden TA, et al. Gene assessment and sample classification for gene expression data using a genetic algorithm/k-nearest neighbor method. Comb Chem High T Scr 2001, 4:727-739.
    • (2001) Comb Chem High T Scr , vol.4 , pp. 727-739
    • Li, L.1    Darden, T.A.2
  • 15
    • 20844445085 scopus 로고    scopus 로고
    • A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset
    • 10.1016/j.ygeno.2004.09.007, 15607418
    • Li L, Jiang W, et al. A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset. Genomics 2005, 85:16-23. 10.1016/j.ygeno.2004.09.007, 15607418.
    • (2005) Genomics , vol.85 , pp. 16-23
    • Li, L.1    Jiang, W.2
  • 18
    • 84867704520 scopus 로고    scopus 로고
    • Particle swarm optimization for feature selection with application in obstructive sleep apnea diagnosis
    • Chen LF, et al. Particle swarm optimization for feature selection with application in obstructive sleep apnea diagnosis. Neural Comput Appl 2011, 21(8):2087-2096.
    • (2011) Neural Comput Appl , vol.21 , Issue.8 , pp. 2087-2096
    • Chen, L.F.1
  • 20
    • 37549069306 scopus 로고    scopus 로고
    • Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data
    • Shen Q, Shi WM, Kong W. Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data. Comput Biol Chem 2008, 32:52-59.
    • (2008) Comput Biol Chem , vol.32 , pp. 52-59
    • Shen, Q.1    Shi, W.M.2    Kong, W.3
  • 21
    • 37549018049 scopus 로고    scopus 로고
    • Top 10 algorithms in data mining
    • Wu X, et al. Top 10 algorithms in data mining. Knowl Inf Syst 2008, 14:1-37.
    • (2008) Knowl Inf Syst , vol.14 , pp. 1-37
    • Wu, X.1
  • 22
    • 77955287981 scopus 로고    scopus 로고
    • Microarray meta-analysis database (M2DB): a uniformly pre-processed, quality controlled, and manually curated human clinical microarray database
    • Cheng WC, et al. Microarray meta-analysis database (M2DB): a uniformly pre-processed, quality controlled, and manually curated human clinical microarray database. BMC Bioinforma 2010, 11:421.
    • (2010) BMC Bioinforma , vol.11 , pp. 421
    • Cheng, W.C.1
  • 23
    • 84897670910 scopus 로고    scopus 로고
    • GEMS Dataset
    • GEMS Dataset 2012, http://www.gems-system.org/, GEMS Dataset.
    • (2012)
  • 24
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 2002, 97:77-86.
    • (2002) J Am Stat Assoc , vol.97 , pp. 77-86
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 25
    • 34547596338 scopus 로고    scopus 로고
    • MiPred: classification of real and pseudo microRNA precursors using random forest prediction modelwith combined features
    • 10.1093/nar/gkm368, 1933124, 17553836
    • Jiang P, et al. MiPred: classification of real and pseudo microRNA precursors using random forest prediction modelwith combined features. Nucleic Acids Res 2007, 35:W339-W344. 10.1093/nar/gkm368, 1933124, 17553836.
    • (2007) Nucleic Acids Res , vol.35
    • Jiang, P.1
  • 26
    • 64549116289 scopus 로고    scopus 로고
    • MicroPred: effective classification of pre-miRNAs for human miRNA gene prediction
    • 10.1093/bioinformatics/btp107, 19233894
    • Batuwita R, Palade V. MicroPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 2009, 25:989-995. 10.1093/bioinformatics/btp107, 19233894.
    • (2009) Bioinformatics , vol.25 , pp. 989-995
    • Batuwita, R.1    Palade, V.2
  • 27
    • 79960697779 scopus 로고    scopus 로고
    • Predicting human microRNA precursors based on an optimized feature subset generated by GA-SVM
    • 10.1016/j.ygeno.2011.04.011, 21586321
    • Wang Y, et al. Predicting human microRNA precursors based on an optimized feature subset generated by GA-SVM. Genomics 2011, 98:73-78. 10.1016/j.ygeno.2011.04.011, 21586321.
    • (2011) Genomics , vol.98 , pp. 73-78
    • Wang, Y.1
  • 28
    • 84859743404 scopus 로고    scopus 로고
    • Combining multiple approaches for gene microarray classification
    • Nanni L, Brahnam S, Lumini A. Combining multiple approaches for gene microarray classification. Bioinformatics 2008, 28:1151-1157.
    • (2008) Bioinformatics , vol.28 , pp. 1151-1157
    • Nanni, L.1    Brahnam, S.2    Lumini, A.3
  • 29
    • 77954199810 scopus 로고    scopus 로고
    • Inference of combinatorial Boolean rules of synergistic gene sets from cancer microarray datasets
    • 10.1093/bioinformatics/btq207, 20410052
    • Park I, Lee KH, Lee D. Inference of combinatorial Boolean rules of synergistic gene sets from cancer microarray datasets. Bioinformatics 2010, 26:1506-1512. 10.1093/bioinformatics/btq207, 20410052.
    • (2010) Bioinformatics , vol.26 , pp. 1506-1512
    • Park, I.1    Lee, K.H.2    Lee, D.3
  • 31
    • 0034714421 scopus 로고    scopus 로고
    • Gene expression data analysis
    • 10.1016/S0014-5793(00)01771-3, 10967322
    • Brazma A, Vilo J. Gene expression data analysis. FEBS Lett 2000, 480:2-16. 10.1016/S0014-5793(00)01771-3, 10967322.
    • (2000) FEBS Lett , vol.480 , pp. 2-16
    • Brazma, A.1    Vilo, J.2
  • 32
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • 10.1126/science.286.5439.531, 10521349
    • Golub TR, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531-527. 10.1126/science.286.5439.531, 10521349.
    • (1999) Science , vol.286 , pp. 531-1527
    • Golub, T.R.1
  • 33
    • 79956224731 scopus 로고    scopus 로고
    • A novel framework for gene selection
    • Zhao W, et al. A novel framework for gene selection. Int J Adv Comput Technol 2011, 3:184-191.
    • (2011) Int J Adv Comput Technol , vol.3 , pp. 184-191
    • Zhao, W.1
  • 34
    • 84897638541 scopus 로고    scopus 로고
    • TOM laboratory
    • TOM laboratory TOM laboratory 2013, http://tom.im.ntust.edu.tw/, TOM laboratory.
    • (2013) TOM laboratory
  • 36
    • 0031700696 scopus 로고    scopus 로고
    • Anchorage Alaska: IEEE International Conference on Evolutionary Computation
    • Shi Y, Eberhart RC. A Modified Particle Swarm Optimizer 1998, 69-73. Anchorage Alaska: IEEE International Conference on Evolutionary Computation.
    • (1998) A Modified Particle Swarm Optimizer , pp. 69-73
    • Shi, Y.1    Eberhart, R.C.2
  • 37
    • 17844387127 scopus 로고    scopus 로고
    • Neighbor-weighted k-nearest neighbor for unbalanced text corpus
    • Tan S. Neighbor-weighted k-nearest neighbor for unbalanced text corpus. Expert Syst Appl 2005, 28:667-671.
    • (2005) Expert Syst Appl , vol.28 , pp. 667-671
    • Tan, S.1
  • 38
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistica predictions
    • Stone M. Cross-validatory choice and assessment of statistica predictions. J Royal Stat Soc 1974, 36:111-147.
    • (1974) J Royal Stat Soc , vol.36 , pp. 111-147
    • Stone, M.1
  • 39
    • 84950645271 scopus 로고
    • The predictive sample reuse method with applications
    • Geisser S. The predictive sample reuse method with applications. J Am Stat Assoc 1975, 70:320-328.
    • (1975) J Am Stat Assoc , vol.70 , pp. 320-328
    • Geisser, S.1
  • 40
    • 0007318509 scopus 로고
    • The shrinkage of the coefficient of multiple correlation
    • Larson S. The shrinkage of the coefficient of multiple correlation. J Educat Psychol 1931, 22:45-55.
    • (1931) J Educat Psychol , vol.22 , pp. 45-55
    • Larson, S.1
  • 42
    • 0000406912 scopus 로고
    • Inference in an authorship problem
    • Mosteller F, Wallace DL. Inference in an authorship problem. J Am Stat Assoc 1963, 58:275-309.
    • (1963) J Am Stat Assoc , vol.58 , pp. 275-309
    • Mosteller, F.1    Wallace, D.L.2
  • 43
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995, 20:273-297.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.