메뉴 건너뛰기




Volumn 98, Issue 2, 2011, Pages 73-78

Predicting human microRNA precursors based on an optimized feature subset generated by GA-SVM

Author keywords

Classification; Feature selection; Genetic algorithm; Human microRNA precursors; Support vector machine

Indexed keywords

MICRORNA; RNA PRECURSOR;

EID: 79960697779     PISSN: 08887543     EISSN: 10898646     Source Type: Journal    
DOI: 10.1016/j.ygeno.2011.04.011     Document Type: Article
Times cited : (52)

References (25)
  • 1
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: genomics, biogenesis, mechanism, and function
    • Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
    • (2004) Cell , vol.116 , pp. 281-297
    • Bartel, D.P.1
  • 2
    • 0027751663 scopus 로고
    • The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
    • Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75:843-854.
    • (1993) Cell , vol.75 , pp. 843-854
    • Lee, R.C.1    Feinbaum, R.L.2    Ambros, V.3
  • 4
    • 33748587841 scopus 로고    scopus 로고
    • A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes
    • Miranda K.C., Huynh T., Tay Y., Ang Y.S., Tam W.L., Thomson A.M., Lim B., Rigoutsos I. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 2006, 126:1203-1217.
    • (2006) Cell , vol.126 , pp. 1203-1217
    • Miranda, K.C.1    Huynh, T.2    Tay, Y.3    Ang, Y.S.4    Tam, W.L.5    Thomson, A.M.6    Lim, B.7    Rigoutsos, I.8
  • 5
    • 67249093200 scopus 로고    scopus 로고
    • Prediction of novel microRNA genes in cancer-associated genomic regions-a combined computational and experimental approach
    • Oulas A., Boutla A., Gkirtzou K., Reczko M., Kalantidis K., Poirazi P. Prediction of novel microRNA genes in cancer-associated genomic regions-a combined computational and experimental approach. Nucleic Acids Res. 2009, 37:3276-3287.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 3276-3287
    • Oulas, A.1    Boutla, A.2    Gkirtzou, K.3    Reczko, M.4    Kalantidis, K.5    Poirazi, P.6
  • 6
    • 34447309058 scopus 로고    scopus 로고
    • De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures
    • Ng K.L., Mishra S.K. De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics 2007, 23:1321-1330.
    • (2007) Bioinformatics , vol.23 , pp. 1321-1330
    • Ng, K.L.1    Mishra, S.K.2
  • 7
    • 30344447264 scopus 로고    scopus 로고
    • Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine
    • Xue C., Li F., He T., Liu G.P., Li Y., Zhang X. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 2005, 6:310.
    • (2005) BMC Bioinformatics , vol.6 , pp. 310
    • Xue, C.1    Li, F.2    He, T.3    Liu, G.P.4    Li, Y.5    Zhang, X.6
  • 8
    • 64549116289 scopus 로고    scopus 로고
    • MicroPred: effective classification of pre-miRNAs for human miRNA gene prediction
    • Batuwita R., Palade V. microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 2009, 25:989-995.
    • (2009) Bioinformatics , vol.25 , pp. 989-995
    • Batuwita, R.1    Palade, V.2
  • 10
    • 34547596338 scopus 로고    scopus 로고
    • MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features
    • Jiang P., Wu H., Wang W., Ma W., Sun X., Lu Z. MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res. 2007, 35:W339-W344.
    • (2007) Nucleic Acids Res. , vol.35
    • Jiang, P.1    Wu, H.2    Wang, W.3    Ma, W.4    Sun, X.5    Lu, Z.6
  • 11
    • 21844477027 scopus 로고    scopus 로고
    • Human microRNA prediction through a probabilistic co-learning model of sequence and structure
    • Nam J.W., Shin K.R., Han J., Lee Y., Kim V.N., Zhang B.T. Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res. 2005, 33:3570-3581.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 3570-3581
    • Nam, J.W.1    Shin, K.R.2    Han, J.3    Lee, Y.4    Kim, V.N.5    Zhang, B.T.6
  • 12
    • 60849085436 scopus 로고    scopus 로고
    • HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models
    • Kadri S., Hinman V., Benos P.V. HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models. BMC Bioinformatics 2009, 10(Suppl 1):S35.
    • (2009) BMC Bioinformatics , vol.10 , Issue.SUPPL. 1
    • Kadri, S.1    Hinman, V.2    Benos, P.V.3
  • 13
    • 75149198083 scopus 로고    scopus 로고
    • Predicting microRNA precursors with a generalized Gaussian components based density estimation algorithm
    • Hsieh C.H., Chang D.T., Hsueh C.H., Wu C.Y., Oyang Y.J. Predicting microRNA precursors with a generalized Gaussian components based density estimation algorithm. BMC Bioinformatics 2010, 11(Suppl 1):S52.
    • (2010) BMC Bioinformatics , vol.11 , Issue.SUPPL. 1
    • Hsieh, C.H.1    Chang, D.T.2    Hsueh, C.H.3    Wu, C.Y.4    Oyang, Y.J.5
  • 14
    • 33745594057 scopus 로고    scopus 로고
    • Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier
    • Yousef M., Nebozhyn M., Shatkay H., Kanterakis S., Showe L.C., Showe M.K. Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. Bioinformatics 2006, 22:1325-1334.
    • (2006) Bioinformatics , vol.22 , pp. 1325-1334
    • Yousef, M.1    Nebozhyn, M.2    Shatkay, H.3    Kanterakis, S.4    Showe, L.C.5    Showe, M.K.6
  • 16
    • 26844572906 scopus 로고    scopus 로고
    • Mining for diagnostic information in body surface potential maps: a comparison of feature selection techniques
    • Finlay D.D., Nugent C.D., McCullagh P.J., Black N.D. Mining for diagnostic information in body surface potential maps: a comparison of feature selection techniques. Biomed. Eng. Online 2005, 4:51.
    • (2005) Biomed. Eng. Online , vol.4 , pp. 51
    • Finlay, D.D.1    Nugent, C.D.2    McCullagh, P.J.3    Black, N.D.4
  • 17
    • 74649087307 scopus 로고    scopus 로고
    • A novel feature selection approach for biomedical data classification
    • Peng Y., Wu Z., Jiang J. A novel feature selection approach for biomedical data classification. J. Biomed. Inform. 2010, 43:15-23.
    • (2010) J. Biomed. Inform. , vol.43 , pp. 15-23
    • Peng, Y.1    Wu, Z.2    Jiang, J.3
  • 18
    • 0742307309 scopus 로고    scopus 로고
    • Feature subset selection for support vector machines through discriminative function pruning analysis
    • Mao K.Z. Feature subset selection for support vector machines through discriminative function pruning analysis. IEEE Trans. Syst. Man Cybern. B Cybern. 2004, 34:60-67.
    • (2004) IEEE Trans. Syst. Man Cybern. B Cybern. , vol.34 , pp. 60-67
    • Mao, K.Z.1
  • 19
    • 3042532685 scopus 로고    scopus 로고
    • Filter versus wrapper gene selection approaches in DNA microarray domains
    • Inza I., Larranaga P., Blanco R., Cerrolaza A.J. Filter versus wrapper gene selection approaches in DNA microarray domains. Artif. Intell. Med. 2004, 31:91-103.
    • (2004) Artif. Intell. Med. , vol.31 , pp. 91-103
    • Inza, I.1    Larranaga, P.2    Blanco, R.3    Cerrolaza, A.J.4
  • 20
    • 0043123153 scopus 로고    scopus 로고
    • Vienna RNA secondary structure server
    • Hofacker I.L. Vienna RNA secondary structure server. Nucleic Acids Res. 2003, 31:3429-3431.
    • (2003) Nucleic Acids Res. , vol.31 , pp. 3429-3431
    • Hofacker, I.L.1
  • 22
    • 20844445085 scopus 로고    scopus 로고
    • A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset
    • Li L., Jiang W., Li X., Moser K.L., Guo Z., Du L., Wang Q., Topol E.J., Rao S. A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset. Genomics 2005, 85:16-23.
    • (2005) Genomics , vol.85 , pp. 16-23
    • Li, L.1    Jiang, W.2    Li, X.3    Moser, K.L.4    Guo, Z.5    Du, L.6    Wang, Q.7    Topol, E.J.8    Rao, S.9
  • 23
    • 0025264854 scopus 로고
    • The equilibrium partition function and base pair binding probabilities for RNA secondary structure
    • McCaskill J.S. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 1990, 29:1105-1119.
    • (1990) Biopolymers , vol.29 , pp. 1105-1119
    • McCaskill, J.S.1
  • 24
    • 77953361850 scopus 로고    scopus 로고
    • PMirP: a pre-microRNA prediction method based on structure-sequence hybrid features
    • Zhao D., Wang Y., Luo D., Shi X., Wang L., Xu D., Yu J., Liang Y. PMirP: a pre-microRNA prediction method based on structure-sequence hybrid features. Artif. Intell. Med. 2010, 49:127-132.
    • (2010) Artif. Intell. Med. , vol.49 , pp. 127-132
    • Zhao, D.1    Wang, Y.2    Luo, D.3    Shi, X.4    Wang, L.5    Xu, D.6    Yu, J.7    Liang, Y.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.