메뉴 건너뛰기




Volumn , Issue PART 1, 2013, Pages 374-382

A randomized mirror descent algorithm for large scale multiple kernel learning

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; LEARNING SYSTEMS; MIRRORS; POLYNOMIALS; PROBABILITY DISTRIBUTIONS;

EID: 84897569152     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (12)

References (31)
  • 1
    • 84897549426 scopus 로고    scopus 로고
    • A randomized mirror descent algorithm for large scale multiple kernel learning
    • abs/1205.0288
    • Afkanpour, A., György, A., Szepesvári, C., and Bowling, M. H. (2013). A randomized mirror descent algorithm for large scale multiple kernel learning. CoRR, abs/1205.0288.
    • (2013) CoRR
    • Afkanpour, A.1    György, A.2    Szepesvári, C.3    Bowling, M.H.4
  • 5
    • 84858766876 scopus 로고    scopus 로고
    • Exploring large feature spaces with hierarchical multiple kernel learning
    • Bach, F. (2008). Exploring large feature spaces with hierarchical multiple kernel learning. In Advances in Neural Information Processing Systems, volume 21, pages 105-112.
    • (2008) Advances in Neural Information Processing Systems , vol.21 , pp. 105-112
    • Bach, F.1
  • 6
    • 0037403111 scopus 로고    scopus 로고
    • Mirror descent and nonlinear projected subgradient methods for convex optimization
    • Beck, A. and Teboulle, M. (2003). Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31(3):167175.
    • (2003) Operations Research Letters , vol.31 , Issue.3 , pp. 167175
    • Beck, A.1    Teboulle, M.2
  • 9
    • 70450141068 scopus 로고    scopus 로고
    • Technical Report 178, Max Planck Institute For Biological Cybernetics
    • Gehler, P. and Nowozin, S. (2008). Infinite kernel learning. Technical Report 178, Max Planck Institute For Biological Cybernetics.
    • (2008) Infinite Kernel Learning
    • Gehler, P.1    Nowozin, S.2
  • 12
    • 35348918820 scopus 로고    scopus 로고
    • Logarithmic regret algorithms for online convex optimization
    • DOI 10.1007/s10994-007-5016-8, Special Issue on COLT 2006; Guest Editors: Avrim Blum, Gabor Lugosi and Hans Ulrich Simon
    • Hazan, E., Agarwal, A., and Kale, S. (2007). Logarithmic regret algorithms for online convex optimization. Machine Learning Journal, 69(2-3):169-192. (Pubitemid 47574314)
    • (2007) Machine Learning , vol.69 , Issue.2-3 , pp. 169-192
    • Hazan, E.1    Agarwal, A.2    Kale, S.3
  • 13
    • 84898471955 scopus 로고    scopus 로고
    • Beyond the regret minimization barrier: An optimal algorithm for stochastic strongly-convex optimization
    • Proceedings of the 24th Annual Conference on Learning Theory
    • Hazan, E. and Kale, S. (2011). Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization. In Proceedings of the 24th Annual Conference on Learning Theory, volume 19 of JMLR Workshop and Conference Proceedings, pages 421-436.
    • (2011) JMLR Workshop and Conference Proceedings , vol.19 , pp. 421-436
    • Hazan, E.1    Kale, S.2
  • 15
    • 0001725820 scopus 로고
    • Perturbation des méthodes d'optimisation. Applications
    • Martinet, B. (1978). Perturbation des méthodes d'optimisation. Applications. RAIRO Analyse Numérique, 12:153-171.
    • (1978) RAIRO Analyse Numérique , vol.12 , pp. 153-171
    • Martinet, B.1
  • 18
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. (2009). Robust stochastic approximation approach to stochastic programming. SIAM J. Optimization, 4:1574-1609.
    • (2009) SIAM J. Optimization , vol.4 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 20
    • 84860819390 scopus 로고    scopus 로고
    • Efficiency of coordinate descent methods on huge-scale optimization problems
    • 2010/2
    • Nesterov, Y. (2010). Efficiency of coordinate descent methods on huge-scale optimization problems. CORE Discussion paper, (2010/2).
    • (2010) CORE Discussion Paper
    • Nesterov, Y.1
  • 21
    • 84897516104 scopus 로고    scopus 로고
    • Subgradient methods for huge-scale optimization problems
    • 2012/2
    • Nesterov, Y. (2012). Subgradient methods for huge-scale optimization problems. CORE Discussion paper, (2012/2).
    • (2012) CORE Discussion Paper
    • Nesterov, Y.1
  • 24
    • 84863986110 scopus 로고    scopus 로고
    • Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
    • (revised July 4, 2011) submitted to
    • Richtárik, P. and Takáĉ, M. (2011). Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. (revised July 4, 2011) submitted to Mathematical Programming.
    • (2011) Mathematical Programming
    • Richtárik, P.1    Takáĉ, M.2
  • 25
    • 0016985417 scopus 로고
    • Monotone operators and the proximal point algorithm
    • Rockafellar, R. (1976). Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization, 14(1):877-898.
    • (1976) SIAM Journal on Control and Optimization , vol.14 , Issue.1 , pp. 877-898
    • Rockafellar, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.