-
1
-
-
84897549426
-
A randomized mirror descent algorithm for large scale multiple kernel learning
-
abs/1205.0288
-
Afkanpour, A., György, A., Szepesvári, C., and Bowling, M. H. (2013). A randomized mirror descent algorithm for large scale multiple kernel learning. CoRR, abs/1205.0288.
-
(2013)
CoRR
-
-
Afkanpour, A.1
György, A.2
Szepesvári, C.3
Bowling, M.H.4
-
2
-
-
33749254646
-
A DC-programming algorithm for kernel selection
-
Argyriou, A., Hauser, R., Micchelli, C., and Pontil, M. (2006). A DC-programming algorithm for kernel selection. In Proceedings of the 23rd International Conference on Machine Learning, pages 41-48.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning
, pp. 41-48
-
-
Argyriou, A.1
Hauser, R.2
Micchelli, C.3
Pontil, M.4
-
3
-
-
26944453996
-
Learning convex combinations of continuously parameterized basic kernels
-
Argyriou, A., Micchelli, C., and Pontil, M. (2005). Learning convex combinations of continuously parameterized basic kernels. In Proceedings of the 18th Annual Conference on Learning Theory, pages 338-352.
-
(2005)
Proceedings of the 18th Annual Conference on Learning Theory
, pp. 338-352
-
-
Argyriou, A.1
Micchelli, C.2
Pontil, M.3
-
5
-
-
84858766876
-
Exploring large feature spaces with hierarchical multiple kernel learning
-
Bach, F. (2008). Exploring large feature spaces with hierarchical multiple kernel learning. In Advances in Neural Information Processing Systems, volume 21, pages 105-112.
-
(2008)
Advances in Neural Information Processing Systems
, vol.21
, pp. 105-112
-
-
Bach, F.1
-
6
-
-
0037403111
-
Mirror descent and nonlinear projected subgradient methods for convex optimization
-
Beck, A. and Teboulle, M. (2003). Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31(3):167175.
-
(2003)
Operations Research Letters
, vol.31
, Issue.3
, pp. 167175
-
-
Beck, A.1
Teboulle, M.2
-
7
-
-
84858743760
-
Learning non-linear combinations of kernels
-
Cortes, C., Mohri, M., and Rostamizadeh, A. (2009). Learning non-linear combinations of kernels. In Advances in Neural Information Processing Systems, volume 22, pages 396-404.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 396-404
-
-
Cortes, C.1
Mohri, M.2
Rostamizadeh, A.3
-
9
-
-
70450141068
-
-
Technical Report 178, Max Planck Institute For Biological Cybernetics
-
Gehler, P. and Nowozin, S. (2008). Infinite kernel learning. Technical Report 178, Max Planck Institute For Biological Cybernetics.
-
(2008)
Infinite Kernel Learning
-
-
Gehler, P.1
Nowozin, S.2
-
11
-
-
0003684449
-
-
Springer, 2nd edition
-
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, Prediction. Springer, 2nd edition.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
12
-
-
35348918820
-
Logarithmic regret algorithms for online convex optimization
-
DOI 10.1007/s10994-007-5016-8, Special Issue on COLT 2006; Guest Editors: Avrim Blum, Gabor Lugosi and Hans Ulrich Simon
-
Hazan, E., Agarwal, A., and Kale, S. (2007). Logarithmic regret algorithms for online convex optimization. Machine Learning Journal, 69(2-3):169-192. (Pubitemid 47574314)
-
(2007)
Machine Learning
, vol.69
, Issue.2-3
, pp. 169-192
-
-
Hazan, E.1
Agarwal, A.2
Kale, S.3
-
13
-
-
84898471955
-
Beyond the regret minimization barrier: An optimal algorithm for stochastic strongly-convex optimization
-
Proceedings of the 24th Annual Conference on Learning Theory
-
Hazan, E. and Kale, S. (2011). Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization. In Proceedings of the 24th Annual Conference on Learning Theory, volume 19 of JMLR Workshop and Conference Proceedings, pages 421-436.
-
(2011)
JMLR Workshop and Conference Proceedings
, vol.19
, pp. 421-436
-
-
Hazan, E.1
Kale, S.2
-
15
-
-
0001725820
-
Perturbation des méthodes d'optimisation. Applications
-
Martinet, B. (1978). Perturbation des méthodes d'optimisation. Applications. RAIRO Analyse Numérique, 12:153-171.
-
(1978)
RAIRO Analyse Numérique
, vol.12
, pp. 153-171
-
-
Martinet, B.1
-
17
-
-
77956529614
-
On the algorithmics and applications of a mixed-norm based kernel learning formulation
-
Nath, J., Dinesh, G., Raman, S., Bhattacharyya, C., Ben-Tal, A., and Ramakrishnan, K. (2009). On the algorithmics and applications of a mixed-norm based kernel learning formulation. In Advances in Neural Information Processing Systems, volume 22, pages 844-852.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 844-852
-
-
Nath, J.1
Dinesh, G.2
Raman, S.3
Bhattacharyya, C.4
Ben-Tal, A.5
Ramakrishnan, K.6
-
18
-
-
70450197241
-
Robust stochastic approximation approach to stochastic programming
-
Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. (2009). Robust stochastic approximation approach to stochastic programming. SIAM J. Optimization, 4:1574-1609.
-
(2009)
SIAM J. Optimization
, vol.4
, pp. 1574-1609
-
-
Nemirovski, A.1
Juditsky, A.2
Lan, G.3
Shapiro, A.4
-
20
-
-
84860819390
-
Efficiency of coordinate descent methods on huge-scale optimization problems
-
2010/2
-
Nesterov, Y. (2010). Efficiency of coordinate descent methods on huge-scale optimization problems. CORE Discussion paper, (2010/2).
-
(2010)
CORE Discussion Paper
-
-
Nesterov, Y.1
-
21
-
-
84897516104
-
Subgradient methods for huge-scale optimization problems
-
2012/2
-
Nesterov, Y. (2012). Subgradient methods for huge-scale optimization problems. CORE Discussion paper, (2012/2).
-
(2012)
CORE Discussion Paper
-
-
Nesterov, Y.1
-
23
-
-
57249084590
-
SimpleMKL
-
Rakotomamonjy, A., Bach, F., Canu, S., and Grandvalet Y. (2008). SimpleMKL. Journal of Machine Learning, 9:2491-2521.
-
(2008)
Journal of Machine Learning
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.2
Canu, S.3
Grandvalet, Y.4
-
24
-
-
84863986110
-
Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
-
(revised July 4, 2011) submitted to
-
Richtárik, P. and Takáĉ, M. (2011). Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. (revised July 4, 2011) submitted to Mathematical Programming.
-
(2011)
Mathematical Programming
-
-
Richtárik, P.1
Takáĉ, M.2
-
25
-
-
0016985417
-
Monotone operators and the proximal point algorithm
-
Rockafellar, R. (1976). Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization, 14(1):877-898.
-
(1976)
SIAM Journal on Control and Optimization
, vol.14
, Issue.1
, pp. 877-898
-
-
Rockafellar, R.1
-
26
-
-
0003408420
-
-
MIT Press, Cambridge, MA, USA
-
Schölkopf, B. and Smola, A. (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Schölkopf, B.1
Smola, A.2
-
29
-
-
33745776113
-
Large scale multiple kernel learning
-
Sonnenburg, S., Rätsch, G., Schäfer, C., and Schölkopf, B. (2006). Large scale multiple kernel learning. The Journal of Machine Learning Research, 7:1531-1565. (Pubitemid 44373694)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Ratsch, G.2
Schafer, C.3
Scholkopf, B.4
-
30
-
-
84863385308
-
An extended level method for efficient multiple kernel learning
-
Xu, Z., Jin, R., King, I., and Lyu, M. (2008). An extended level method for efficient multiple kernel learning. In Advances in Neural Information Processing Systems, volume 21, pages 1825-1832.
-
(2008)
Advances in Neural Information Processing Systems
, vol.21
, pp. 1825-1832
-
-
Xu, Z.1
Jin, R.2
King, I.3
Lyu, M.4
-
31
-
-
77956547440
-
Simple and efficient multiple kernel learning by group lasso
-
Xu, Z., Jin, R., Yang, H., King, I., and Lyu, M. R. (2010). Simple and efficient multiple kernel learning by group lasso. In Proceedings of the 27th International Conference on Machine Learning, pages 1175-1182.
-
(2010)
Proceedings of the 27th International Conference on Machine Learning
, pp. 1175-1182
-
-
Xu, Z.1
Jin, R.2
Yang, H.3
King, I.4
Lyu, M.R.5
|