-
1
-
-
33749242994
-
Agnostic active learning
-
ACM
-
Balcan, M., Beygelzimer, A., Langford, J.: Agnostic active learning. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 65-72. ACM (2006)
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning
, pp. 65-72
-
-
Balcan, M.1
Beygelzimer, A.2
Langford, J.3
-
2
-
-
84255174914
-
Active Learning Literature Survey
-
Settles, B.: Active Learning Literature Survey. Machine Learning 15(2), 201-221 (1994)
-
(1994)
Machine Learning
, vol.15
, Issue.2
, pp. 201-221
-
-
Settles, B.1
-
3
-
-
65449144451
-
Get another label? improving data quality and data mining using multiple, noisy labelers
-
ACM
-
Sheng, V., Provost, F., Ipeirotis, P.: Get another label? improving data quality and data mining using multiple, noisy labelers. In: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 614-622. ACM (2008)
-
(2008)
Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 614-622
-
-
Sheng, V.1
Provost, F.2
Ipeirotis, P.3
-
4
-
-
70350681833
-
Efficiently learning the accuracy of labeling sources for selective sampling
-
ACM
-
Donmez, P., Carbonell, J., Schneider, J.: Efficiently learning the accuracy of labeling sources for selective sampling. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 259-268. ACM (2009)
-
(2009)
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 259-268
-
-
Donmez, P.1
Carbonell, J.2
Schneider, J.3
-
5
-
-
71149084080
-
Supervised Learning from Multiple Experts: Whom to trust when everyone lies a bit
-
ACM
-
Raykar, V., Yu, S., Zhao, L., Jerebko, A., Florin, C., Valadez, G., Bogoni, L., Moy, L.: Supervised Learning from Multiple Experts: Whom to trust when everyone lies a bit. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 889-896. ACM (2009)
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning
, pp. 889-896
-
-
Raykar, V.1
Yu, S.2
Zhao, L.3
Jerebko, A.4
Florin, C.5
Valadez, G.6
Bogoni, L.7
Moy, L.8
-
6
-
-
80053360508
-
Cheap and fast - But is it good?: Evaluating non-expert annotations for natural language tasks
-
Association for Computational Linguistics
-
Snow, R., O'Connor, B., Jurafsky, D., Ng, A.: Cheap and fast - but is it good?: evaluating non-expert annotations for natural language tasks. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 254-263. Association for Computational Linguistics (2008)
-
(2008)
Proceedings of the Conference on Empirical Methods in Natural Language Processing
, pp. 254-263
-
-
Snow, R.1
O'Connor, B.2
Jurafsky, D.3
Ng, A.4
-
8
-
-
79951749185
-
Active learning from multiple noisy labelers with varied costs
-
IEEE
-
Zheng, Y., Scott, S., Deng, K.: Active learning from multiple noisy labelers with varied costs. In: 2010 IEEE International Conference on Data Mining, pp. 639-648. IEEE (2010)
-
(2010)
2010 IEEE International Conference on Data Mining
, pp. 639-648
-
-
Zheng, Y.1
Scott, S.2
Deng, K.3
-
11
-
-
0442319140
-
Toward optimal active learning through sampling estimation of error reduction
-
Citeseer
-
Roy, N., McCallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: Machine Learning-International Workshop then Conference, pp. 441-448. Citeseer (2001)
-
(2001)
Machine Learning-International Workshop Then Conference
, pp. 441-448
-
-
Roy, N.1
McCallum, A.2
-
13
-
-
84861438044
-
-
WEKA Machine Learning Project
-
WEKA Machine Learning Project, "Weka", http://www.cs.waikato. ac.nz/~ml/weka
-
Weka
-
-
|