메뉴 건너뛰기




Volumn 20, Issue 12, 2012, Pages 1281-1292

GPR model with signal preprocessing and bias update for dynamic processes modeling

Author keywords

Bias update; Dynamic system modeling; Gaussian process regression model; Linear and nonlinear dynamic process; Signal preprocessing

Indexed keywords

BIAS UPDATE; DYNAMIC SYSTEM MODELING; GAUSSIAN PROCESS REGRESSION MODEL; LINEAR AND NONLINEAR DYNAMIC PROCESS; SIGNAL PREPROCESSING;

EID: 84867488978     PISSN: 09670661     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.conengprac.2012.07.003     Document Type: Article
Times cited : (26)

References (52)
  • 1
    • 0037440549 scopus 로고    scopus 로고
    • Dynamic neural networks partial least squares (DNNPLS) identification of multivariable processes
    • Adebiyi O.A., Corripio A.B. Dynamic neural networks partial least squares (DNNPLS) identification of multivariable processes. Computers and Chemical Engineering 2003, 27:143-155.
    • (2003) Computers and Chemical Engineering , vol.27 , pp. 143-155
    • Adebiyi, O.A.1    Corripio, A.B.2
  • 2
    • 59349107270 scopus 로고    scopus 로고
    • A recursive PLS-based soft sensor for prediction of the melt idex during grade change operations in HDPE plant
    • Ahmed F., Nazier S., Yeo Y.K. A recursive PLS-based soft sensor for prediction of the melt idex during grade change operations in HDPE plant. Korean Journal of Chemical Engineering 2009, 26:14-20.
    • (2009) Korean Journal of Chemical Engineering , vol.26 , pp. 14-20
    • Ahmed, F.1    Nazier, S.2    Yeo, Y.K.3
  • 3
    • 77956828132 scopus 로고
    • Canonical correlation analysis of time series and the use of an information criterion
    • Academic Press, New York, R.K. Mehra, D.G. Lainiotis (Eds.)
    • Akaike H. Canonical correlation analysis of time series and the use of an information criterion. System Identification: Advances and Case Studies 1976, Academic Press, New York. R.K. Mehra, D.G. Lainiotis (Eds.).
    • (1976) System Identification: Advances and Case Studies
    • Akaike, H.1
  • 4
    • 79953647811 scopus 로고    scopus 로고
    • Hybrid control of a pneumatic artificial muscle (PAM) robot arm using an inverse NARX fuzzy model
    • Anh H.P.H., Ahn K.K.W. Hybrid control of a pneumatic artificial muscle (PAM) robot arm using an inverse NARX fuzzy model. Engineering Applications of Artificial Intelligence 2011, 24:697-716.
    • (2011) Engineering Applications of Artificial Intelligence , vol.24 , pp. 697-716
    • Anh, H.P.H.1    Ahn, K.K.W.2
  • 5
    • 0034661658 scopus 로고    scopus 로고
    • Soft sensors development for on-line bioreactor state estimation
    • Assis J.D., Filho R.M. Soft sensors development for on-line bioreactor state estimation. Computers and Chemical Engineering 2000, 24:1099-1103.
    • (2000) Computers and Chemical Engineering , vol.24 , pp. 1099-1103
    • Assis, J.D.1    Filho, R.M.2
  • 6
    • 34548046773 scopus 로고    scopus 로고
    • Application of Gaussian processes for black-box modeling of biosystems
    • Ažman K., Kocijan J. Application of Gaussian processes for black-box modeling of biosystems. ISA Transactions 2007, 46:443-457.
    • (2007) ISA Transactions , vol.46 , pp. 443-457
    • Ažman, K.1    Kocijan, J.2
  • 7
    • 79151477311 scopus 로고    scopus 로고
    • Dynamical systems identification using Gaussian process models with incorporated local models
    • Ažman K., Kocijan J. Dynamical systems identification using Gaussian process models with incorporated local models. Engineering Applications of Artificial Intelligence 2011, 24:398-408.
    • (2011) Engineering Applications of Artificial Intelligence , vol.24 , pp. 398-408
    • Ažman, K.1    Kocijan, J.2
  • 10
    • 78651346497 scopus 로고    scopus 로고
    • Forecasting the evolution of nonlinear and nonstationary systems using recurrence-based local Gaussian process models
    • Bukkapatnam S.T.S., Cheng C. Forecasting the evolution of nonlinear and nonstationary systems using recurrence-based local Gaussian process models. Physical Review E 2010, 82:056206-1-12.
    • (2010) Physical Review E , vol.82 , pp. 056206-112
    • Bukkapatnam, S.T.S.1    Cheng, C.2
  • 11
    • 26444525618 scopus 로고    scopus 로고
    • Greenhouse gas production: a comparison between aerobic and anaerobic wastewater treatment technology
    • Cakir F.Y., Stenstrom M.K. Greenhouse gas production: a comparison between aerobic and anaerobic wastewater treatment technology. Water Research 2005, 39:4197-4203.
    • (2005) Water Research , vol.39 , pp. 4197-4203
    • Cakir, F.Y.1    Stenstrom, M.K.2
  • 12
    • 74449090973 scopus 로고    scopus 로고
    • A review on anaerobic-aerobic treatment of industrial and municipal wastewater
    • Chan Y., Chong M., Law C., Hassell D.G. A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal 2009, 155:1-18.
    • (2009) Chemical Engineering Journal , vol.155 , pp. 1-18
    • Chan, Y.1    Chong, M.2    Law, C.3    Hassell, D.G.4
  • 14
    • 77955310226 scopus 로고    scopus 로고
    • Bayesian variable selection for Gaussian process regression: application to chemometric calibration of spectrometers
    • Chen T., Wang B. Bayesian variable selection for Gaussian process regression: application to chemometric calibration of spectrometers. Neurocomputing 2010, 73:2718-2726.
    • (2010) Neurocomputing , vol.73 , pp. 2718-2726
    • Chen, T.1    Wang, B.2
  • 15
    • 0031168001 scopus 로고    scopus 로고
    • Recursive exponentially weighted PLS and its applications to adaptive control and prediction
    • Dayal B.S., MacGregor J.F. Recursive exponentially weighted PLS and its applications to adaptive control and prediction. Journal of Process Control 1997, 7:169-179.
    • (1997) Journal of Process Control , vol.7 , pp. 169-179
    • Dayal, B.S.1    MacGregor, J.F.2
  • 18
    • 0020565429 scopus 로고
    • Anaerobic-aerobic biological treatment of starch industry waste-waters
    • Frostell B. Anaerobic-aerobic biological treatment of starch industry waste-waters. Starke 1983, 35:185-189.
    • (1983) Starke , vol.35 , pp. 185-189
    • Frostell, B.1
  • 19
    • 79954505385 scopus 로고    scopus 로고
    • Quality prediction for polypropylene production process based on CLGPR model
    • Ge Z., Chen T., Song Z. Quality prediction for polypropylene production process based on CLGPR model. Control Engineering Practice 2011, 19:423-432.
    • (2011) Control Engineering Practice , vol.19 , pp. 423-432
    • Ge, Z.1    Chen, T.2    Song, Z.3
  • 20
    • 11144325691 scopus 로고
    • Partial least-squares regression: a tutorial
    • Geladi P., Kowalski B.R. Partial least-squares regression: a tutorial. Analytica Chimica Acta 1986, 185:1-17.
    • (1986) Analytica Chimica Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 21
    • 44549084178 scopus 로고    scopus 로고
    • Explicit stochastic predictive control of combustion plants based on Gaussian process models
    • Grancharova A., Kocijan J., Johansen T.A. Explicit stochastic predictive control of combustion plants based on Gaussian process models. Automatica 2008, 44:1621-1631.
    • (2008) Automatica , vol.44 , pp. 1621-1631
    • Grancharova, A.1    Kocijan, J.2    Johansen, T.A.3
  • 27
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems.Transactions of the ASME
    • Kalman R.E. A new approach to linear filtering and prediction problems.Transactions of the ASME. Journal of Basic Engineering (Series D) 1960, 82:35-45.
    • (1960) Journal of Basic Engineering (Series D) , vol.82 , pp. 35-45
    • Kalman, R.E.1
  • 28
    • 0031234736 scopus 로고    scopus 로고
    • Modeling and control of multivariable processes: dynamic PLS approach
    • Lakshminarayanan S., Shah S.L., Nandakumar K. Modeling and control of multivariable processes: dynamic PLS approach. AICHE Journal 1997, 43:2307-2322.
    • (1997) AICHE Journal , vol.43 , pp. 2307-2322
    • Lakshminarayanan, S.1    Shah, S.L.2    Nandakumar, K.3
  • 29
    • 0025532490 scopus 로고
    • Canonical variate analysis for system identification
    • In Proceedings of the 29th IEEE conference on decision and control, Honolulu, Hawaii
    • Larimore, W.E. (1990). Canonical variate analysis for system identification, filtering and adaptive control. In Proceedings of the 29th IEEE conference on decision and control, Honolulu, Hawaii, 1, pp. 596-694.
    • (1990) filtering and adaptive control. , vol.1 , pp. 596-694
    • Larimore, W.E.1
  • 30
    • 33746777157 scopus 로고    scopus 로고
    • Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant
    • Lee D.S., Lee M.W., Woo S.H., Kim Y., Park J.M. Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant. Process Biochemistry 2006, 41:2050-2057.
    • (2006) Process Biochemistry , vol.41 , pp. 2050-2057
    • Lee, D.S.1    Lee, M.W.2    Woo, S.H.3    Kim, Y.4    Park, J.M.5
  • 31
    • 14944347949 scopus 로고    scopus 로고
    • A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling
    • Li C., Ye H., Wang G., Zhang J. A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling. Chemical Engineering Technology 2005, 28:141-152.
    • (2005) Chemical Engineering Technology , vol.28 , pp. 141-152
    • Li, C.1    Ye, H.2    Wang, G.3    Zhang, J.4
  • 32
    • 73649091761 scopus 로고    scopus 로고
    • Selective recursive kernel learning for online identification of nonlinear systems with NARX form
    • Liu Y., Wang H., Yu J., Li P. Selective recursive kernel learning for online identification of nonlinear systems with NARX form. Journal of Process Control 2010, 20:181-194.
    • (2010) Journal of Process Control , vol.20 , pp. 181-194
    • Liu, Y.1    Wang, H.2    Yu, J.3    Li, P.4
  • 33
    • 56549090156 scopus 로고    scopus 로고
    • Long-term time series prediction with the NARX network: an empirical evaluation
    • Maria J., Menezes P., Barreto G.A. Long-term time series prediction with the NARX network: an empirical evaluation. Neurocomputing 2008, 71:3335-3343.
    • (2008) Neurocomputing , vol.71 , pp. 3335-3343
    • Maria, J.1    Menezes, P.2    Barreto, G.A.3
  • 34
    • 0036397757 scopus 로고    scopus 로고
    • Intelligent "control" applications in the process industries
    • McAvoy T. Intelligent "control" applications in the process industries. Annual Reviews in Control 2002, 26:75-86.
    • (2002) Annual Reviews in Control , vol.26 , pp. 75-86
    • McAvoy, T.1
  • 35
    • 33645417998 scopus 로고    scopus 로고
    • Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process
    • Mu S., Zeng Y., Liu R., Wu P., Su H., Chu J. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process. Journal of Process Control 2006, 16:557-566.
    • (2006) Journal of Process Control , vol.16 , pp. 557-566
    • Mu, S.1    Zeng, Y.2    Liu, R.3    Wu, P.4    Su, H.5    Chu, J.6
  • 37
    • 0030856185 scopus 로고    scopus 로고
    • PLS, balanced, and canonical variate realization techniques for identifying VARMA models in state space
    • Negiz A., Çinar A. PLS, balanced, and canonical variate realization techniques for identifying VARMA models in state space. Chemometrics and Intelligent Laboratory Systems 1997, 38:209-221.
    • (1997) Chemometrics and Intelligent Laboratory Systems , vol.38 , pp. 209-221
    • Negiz, A.1    Çinar, A.2
  • 38
    • 80052566365 scopus 로고    scopus 로고
    • Recursive GPR for nonlinear dynamic process modeling
    • Ni W., Tan S.K., Ng W.J. Recursive GPR for nonlinear dynamic process modeling. Chemical Engineering Journal 2011, 173:636-643.
    • (2011) Chemical Engineering Journal , vol.173 , pp. 636-643
    • Ni, W.1    Tan, S.K.2    Ng, W.J.3
  • 39
    • 0002978835 scopus 로고
    • Curve fitting and optimal design for prediction (with discussion)
    • O'Hagan A. Curve fitting and optimal design for prediction (with discussion). Journal of the Royal Statistical Society B 1978, 40:1-42.
    • (1978) Journal of the Royal Statistical Society B , vol.40 , pp. 1-42
    • O'Hagan, A.1
  • 40
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin S.J. Recursive PLS algorithms for adaptive data modeling. Computers and Chemical Engineering 1998, 22:503-514.
    • (1998) Computers and Chemical Engineering , vol.22 , pp. 503-514
    • Qin, S.J.1
  • 42
    • 0004085699 scopus 로고    scopus 로고
    • Evaluation of Gaussian processes and other methods for non-linear regression
    • Ph.D. Thesis, University of Toronto, Canada.
    • Rasmussen, C.E. (1996). Evaluation of Gaussian processes and other methods for non-linear regression, Ph.D. Thesis, University of Toronto, Canada.
    • (1996)
    • Rasmussen, C.E.1
  • 44
    • 79952808759 scopus 로고    scopus 로고
    • Predictive dynamic modeling of key process variables in granulation processes using partial least squares approach
    • Ronen D., Sanders C.F.W., Tan H.S., Mort P.R., Doyle F.J. Predictive dynamic modeling of key process variables in granulation processes using partial least squares approach. Industrial & Engineering Chemistry Research 2011, 50:1419-1426.
    • (2011) Industrial & Engineering Chemistry Research , vol.50 , pp. 1419-1426
    • Ronen, D.1    Sanders, C.F.W.2    Tan, H.S.3    Mort, P.R.4    Doyle, F.J.5
  • 45
    • 0032451290 scopus 로고    scopus 로고
    • Recursive data-based prediction and control of batch product quality
    • Russell S.A., Kesavan P., Lee J.H., Ogunnaike B.A. Recursive data-based prediction and control of batch product quality. AIChE Journal 1998, 44:2442-2458.
    • (1998) AIChE Journal , vol.44 , pp. 2442-2458
    • Russell, S.A.1    Kesavan, P.2    Lee, J.H.3    Ogunnaike, B.A.4
  • 46
    • 0042553279 scopus 로고
    • Smoothing and differentiation of data by simplified least squares procedures
    • Savitzky A., Golay M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 1964, 36:1627-1639.
    • (1964) Analytical Chemistry , vol.36 , pp. 1627-1639
    • Savitzky, A.1    Golay, M.J.E.2
  • 47
    • 52949129443 scopus 로고    scopus 로고
    • Biomass estimation in batch biotechnological process by Bayesian Gaussian process regression
    • Sciascio F.di., Amicarelli A.N. Biomass estimation in batch biotechnological process by Bayesian Gaussian process regression. Computers and Chemical Engineering 2008, 32:3264-3273.
    • (2008) Computers and Chemical Engineering , vol.32 , pp. 3264-3273
    • Sciascio, F.D.1    Amicarelli, A.N.2
  • 48
    • 0033652276 scopus 로고    scopus 로고
    • Modeling of dynamic systems using latent variable and subspace methods
    • Shi R., MacGregor J.F. Modeling of dynamic systems using latent variable and subspace methods. Journal of Chemometrics 2000, 14:423-439.
    • (2000) Journal of Chemometrics , vol.14 , pp. 423-439
    • Shi, R.1    MacGregor, J.F.2
  • 49
    • 0033284964 scopus 로고    scopus 로고
    • A comparison of canonical variate analysis and partial least squares for the identification of dynamic processes
    • In Proceedings of the American Control Conference, San Diego, California
    • Simoglou, A., Martin, E.B., & Morris, A.J. (1999a). A comparison of canonical variate analysis and partial least squares for the identification of dynamic processes. In Proceedings of the American Control Conference, San Diego, California, pp. 832-837.
    • (1999) , pp. 832-837
    • Simoglou, A.1    Martin, E.B.2    Morris, A.J.3
  • 50
    • 0001940299 scopus 로고    scopus 로고
    • Dynamic multivariate statistical process control using partial least squares and canonical variate analysis
    • Simoglou A., Martin E.B., Morris A.J. Dynamic multivariate statistical process control using partial least squares and canonical variate analysis. Computers and Chemical Engineering Supplement 1999, S277-S280.
    • (1999) Computers and Chemical Engineering Supplement
    • Simoglou, A.1    Martin, E.B.2    Morris, A.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.