메뉴 건너뛰기




Volumn 44, Issue 3, 2014, Pages 445-455

Sample subset optimization techniques for imbalanced and ensemble learning problems in bioinformatics applications

Author keywords

Bioinformatics applications; ensemble learning; imbalanced learning; sample subset optimization (SSO); under sampling

Indexed keywords

BIOINFORMATICS APPLICATIONS; ENSEMBLE CLASSIFIERS; ENSEMBLE LEARNING; ENSEMBLE TECHNIQUES; IMBALANCED LEARNING; MACHINE LEARNING PROBLEM; OPTIMIZATION TECHNIQUES; UNDER-SAMPLING;

EID: 84896880054     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCYB.2013.2257480     Document Type: Article
Times cited : (78)

References (40)
  • 1
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • Sep.
    • H. He and E. Garcia, "Learning from imbalanced data," IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.2
  • 3
    • 79957958095 scopus 로고    scopus 로고
    • Sample subset optimization for classifying imbalanced biological data
    • P. Yang, Z. Zhang, B. Zhou, and A. Zomaya, "Sample subset optimization for classifying imbalanced biological data," in Proc. 15th PAKDD, 2011, pp. 333-344.
    • (2011) Proc. 15th PAKDD , pp. 333-344
    • Yang, P.1    Zhang, Z.2    Zhou, B.3    Zomaya, A.4
  • 4
    • 36549059781 scopus 로고    scopus 로고
    • A practical guide to the art of RNA gene prediction
    • DOI 10.1093/bib/bbm011
    • I. Meyer, "A practical guide to the art of RNA gene prediction," Briefings Bioinformatics, vol. 8, no. 6, pp. 396-414, 2007. (Pubitemid 350186920)
    • (2007) Briefings in Bioinformatics , vol.8 , Issue.6 , pp. 396-414
    • Meyer, I.M.1
  • 5
    • 69249146630 scopus 로고    scopus 로고
    • Toward accurate human promoter recognition: A review of currently used sequence features and classification methods
    • J. Zeng, S. Zhu, and H. Yan, "Toward accurate human promoter recognition: A review of currently used sequence features and classification methods," Briefings Bioinformatics, vol. 10, no. 5, pp. 498-508, 2009.
    • (2009) Briefings Bioinformatics , vol.10 , Issue.5 , pp. 498-508
    • Zeng, J.1    Zhu, S.2    Yan, H.3
  • 7
    • 77957988489 scopus 로고    scopus 로고
    • Class prediction for high-dimensional classimbalanced data
    • R. Blagus and L. Lusa, "Class prediction for high-dimensional classimbalanced data," BMC Bioinformatics, vol. 11, no. 1, p. 523, 2010.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 523
    • Blagus, R.1    Lusa, L.2
  • 9
    • 79957967238 scopus 로고    scopus 로고
    • Class confidence weighted knn algorithms for imbalanced data sets
    • W. Liu and S. Chawla, "Class confidence weighted knn algorithms for imbalanced data sets," in Proc. 15th PAKDD, 2011, pp. 345-356.
    • (2011) Proc. 15th PAKDD , pp. 345-356
    • Liu, W.1    Chawla, S.2
  • 10
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • N. Chawla, N. Japkowicz, and A. Kotcz, "Editorial: Special issue on learning from imbalanced data sets," ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 1-6, 2004.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.1    Japkowicz, N.2    Kotcz, A.3
  • 11
    • 64049108468 scopus 로고    scopus 로고
    • Exploratory undersampling for classimbalance learning
    • Apr.
    • X. Liu, J. Wu, and Z. Zhou, "Exploratory undersampling for classimbalance learning," IEEE Trans. Syst., Man, Cybern., B Cybern., vol. 39, no. 2, pp. 539-550, Apr. 2009.
    • (2009) IEEE Trans. Syst., Man, Cybern., B Cybern. , vol.39 , Issue.2 , pp. 539-550
    • Liu, X.1    Wu, J.2    Zhou, Z.3
  • 13
    • 70349617264 scopus 로고    scopus 로고
    • Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy
    • S. García and F. Herrera, "Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy," Evol. Comput., vol. 17, no. 3, pp. 275-306, 2009.
    • (2009) Evol. Comput. , vol.17 , Issue.3 , pp. 275-306
    • García, S.1    Herrera, F.2
  • 14
    • 65349114392 scopus 로고    scopus 로고
    • An evolutionary algorithm approach to optimal ensemble classifiers for dna microarray data analysis
    • Jun.
    • K. Kim and S. Cho, "An evolutionary algorithm approach to optimal ensemble classifiers for dna microarray data analysis," IEEE Trans. Evol. Comput., vol. 12, no. 3, pp. 377-388, Jun. 2008.
    • (2008) IEEE Trans. Evol. Comput. , vol.12 , Issue.3 , pp. 377-388
    • Kim, K.1    Cho, S.2
  • 15
    • 79957972049 scopus 로고    scopus 로고
    • Decision tree and ensemble learning algorithms with their applications in bioinformatics
    • D. Che, Q. Liu, K. Rasheed, and X. Tao, "Decision tree and ensemble learning algorithms with their applications in bioinformatics," Software Tools Algorithms Biol. Syst., vol. 696, pp. 191-199, 2011.
    • (2011) Software Tools Algorithms Biol. Syst. , vol.696 , pp. 191-199
    • Che, D.1    Liu, Q.2    Rasheed, K.3    Tao, X.4
  • 16
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • DOI 10.1093/bioinformatics/btg419
    • U. Braga-Neto and E. Dougherty, "Is cross-validation valid for smallsample microarray classification?" Bioinformatics, vol. 20, no. 3, pp. 374-380, 2004. (Pubitemid 38262769)
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 17
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Mach. Learning, vol. 24, no. 2, pp. 123-140, 1996. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 18
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. Schapire, Y. Freund, P. Bartlett, and W. Lee, "Boosting the margin: A new explanation for the effectiveness of voting methods," Ann. Statist., vol. 26, no. 5, pp. 1651-1686, 1998. (Pubitemid 128376902)
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 20
    • 36549040919 scopus 로고    scopus 로고
    • Ensemble learning of genetic networks from time-series expression data
    • DOI 10.1093/bioinformatics/btm514
    • D. Nam, S. Yoon, and J. Kim, "Ensemble learning of genetic networks from time-series expression data," Bioinformatics, vol. 23, no. 23, pp. 3225-3231, 2007. (Pubitemid 350187526)
    • (2007) Bioinformatics , vol.23 , Issue.23 , pp. 3225-3231
    • Nam, D.1    Yoon, S.H.2    Kim, J.F.3
  • 21
    • 33646181069 scopus 로고    scopus 로고
    • A novel ensemble machine learning for robust microarray data classification
    • Y. Peng, "A novel ensemble machine learning for robust microarray data classification," Comput. Biol. Med., vol. 36, no. 6, pp. 553-573, 2006.
    • (2006) Comput. Biol. Med. , vol.36 , Issue.6 , pp. 553-573
    • Peng, Y.1
  • 22
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L. Kuncheva and C. Whitaker, "Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy," Mach. Learning, vol. 51, no. 2, pp. 181-207, 2003.
    • (2003) Mach. Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 24
    • 64549116289 scopus 로고    scopus 로고
    • Micropred: Effective classification of premiRNAs for human miRNA gene prediction
    • R. Batuwita and V. Palade, "Micropred: Effective classification of premiRNAs for human miRNA gene prediction," Bioinformatics, vol. 25, no. 8, pp. 989-995, 2009.
    • (2009) Bioinformatics , vol.25 , Issue.8 , pp. 989-995
    • Batuwita, R.1    Palade, V.2
  • 25
    • 67849103758 scopus 로고    scopus 로고
    • Hhomp-prediction and classification of outer membrane proteins
    • M. Remmert, D. Linke, A. Lupas, and J. Söding, "Hhomp- prediction and classification of outer membrane proteins," Nucleic Acids Res., vol. 37, no. 2, pp. W446-W451, 2009.
    • (2009) Nucleic Acids Res. , vol.37 , Issue.2
    • Remmert, M.1    Linke, D.2    Lupas, A.3    Söding, J.4
  • 26
    • 0030332781 scopus 로고    scopus 로고
    • A probabilistic classification system for predicting the cellular localization sites of proteins
    • P. Horton and K. Nakai, "A probabilistic classification system for predicting the cellular localization sites of proteins," in Proc. 4th ISMB, 1996, pp. 109-115.
    • (1996) Proc. 4th ISMB , pp. 109-115
    • Horton, P.1    Nakai, K.2
  • 27
    • 34047173652 scopus 로고    scopus 로고
    • Analysis of E.Coli promoter recognition problem in dinucleotide feature space
    • DOI 10.1093/bioinformatics/btl670
    • T. Rani, S. Bhavani, and R. Bapi, "Analysis of e.coli promoter recognition problem in dinucleotide feature space," Bioinformatics, vol. 23, no. 5, pp. 582-588, 2007. (Pubitemid 46522591)
    • (2007) Bioinformatics , vol.23 , Issue.5 , pp. 582-588
    • Rani, T.S.1    Bhavani, S.D.2    Bapi, R.S.3
  • 28
    • 72449196261 scopus 로고    scopus 로고
    • Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics
    • C. Pan, J. Olsen, H. Daub, and M. Mann, "Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics, " Molecular Cellular Proteomics, vol. 8, no. 12, pp. 2796-2808, 2009.
    • (2009) Molecular Cellular Proteomics , vol.8 , Issue.12 , pp. 2796-2808
    • Pan, C.1    Olsen, J.2    Daub, H.3    Mann, M.4
  • 29
    • 2942598149 scopus 로고    scopus 로고
    • PhosphoSite: A bioinformatics resource dedicated to physiological protein phosphorylation
    • DOI 10.1002/pmic.200300772
    • P. Hornbeck, I. Chabra, J. Kornhauser, E. Skrzypek, and B. Zhang, "Phosphosite: A bioinformatics resource dedicated to physiological protein phosphorylation," Proteomics, vol. 4, no. 6, pp. 1551-1561, 2004. (Pubitemid 38738314)
    • (2004) Proteomics , vol.4 , Issue.6 , pp. 1551-1561
    • Hornbeck, P.V.1    Chabra, I.2    Kornhauser, J.M.3    Skrzypek, E.4    Zhang, B.5
  • 34
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridlyand, and T. Speed, "Comparison of discrimination methods for the classification of tumors using gene expression data," J. Amer. Statist. Assoc., vol. 97, no. 457, pp. 77-87, 2002.
    • (2002) J. Amer. Statist. Assoc. , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 35
    • 0012253746 scopus 로고    scopus 로고
    • Computational analysis of core promoters in the drosophila genome
    • U. Ohler, G. C. Liao, H. Niemann, and G. M. Rubin, "Computational analysis of core promoters in the drosophila genome," Genome Biol., vol. 3, no. 12, pp. 81-87, 2002.
    • (2002) Genome Biol. , vol.3 , Issue.12 , pp. 81-87
    • Ohler, U.1    Liao, G.C.2    Niemann, H.3    Rubin, G.M.4
  • 37
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett, "An introduction to ROC analysis," Pattern Recognit. Lett., vol. 27, no. 8, pp. 861-874, 2006.
    • (2006) Pattern Recognit. Lett. , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 38
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learning Res., vol. 7, pp. 1-30, Jan. 2006. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 39
    • 84864153221 scopus 로고    scopus 로고
    • Multiclass imbalance problems: Analysis and potential solutions
    • Aug.
    • S. Wang and X. Yao, "Multiclass imbalance problems: Analysis and potential solutions," IEEE Trans. Syst., Man, Cybern., B Cybern., vol. 42, no. 4, pp. 1119-1130, Aug. 2012.
    • (2012) IEEE Trans. Syst., Man, Cybern., B Cybern. , vol.42 , Issue.4 , pp. 1119-1130
    • Wang, S.1    Yao, X.2
  • 40


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.