메뉴 건너뛰기




Volumn 24, Issue 3, 2014, Pages

Improved adaptive splitting and selection: The hybrid training method of a classifier based on a feature space partitioning

Author keywords

classifier ensemble; Combined classifier; evolutionary algorithm; hybrid algorithm; Machine learning; pattern classification

Indexed keywords

CLASSIFICATION ACCURACY; CLASSIFIER ENSEMBLES; COMBINED CLASSIFIERS; COMPOUND CLASSIFIERS; FEATURE SPACE PARTITIONING; HYBRID ALGORITHMS; TRAINING ALGORITHMS; TRAINING PROCEDURES;

EID: 84896878762     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0129065714300071     Document Type: Article
Times cited : (42)

References (44)
  • 2
    • 84887090067 scopus 로고    scopus 로고
    • A survey of multiple classifier systems as hybrid systems
    • M. Wózniak, M. Grana and E. Corchado, A survey of multiple classifier systems as hybrid systems, Inform. Fusion 16 (2014) 3-17.
    • (2014) Inform. Fusion , vol.16 , pp. 3-17
    • Wózniak, M.1    Grana, M.2    Corchado, E.3
  • 3
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • MIT Press
    • A. Krogh and J. Vedelsby, Neural network ensembles, cross validation, and active learning, in Advances in Neural Information Processing Systems, Vol. 7 (MIT Press, 1995), pp. 231-238.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 4
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • G. Brown, J. L. Wyatt, R. Harris and X. Yao, Diversity creation methods: A survey and categorisation, Inform. Fusion 6(1) (2005) 5-20.
    • (2005) Inform. Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.L.2    Harris, R.3    Yao, X.4
  • 5
  • 6
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • T. G. Dietterich and G. Bakiri, Solving multiclass learning problems via error-correcting output codes, J. Artif. Intell. Res. 2 (1995) 263-286.
    • (1995) J. Artif. Intell. Res. , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 7
    • 67650085798 scopus 로고    scopus 로고
    • A comparative study of data sampling techniques for constructing neural network ensembles
    • M. A. H. Akhand, M. M. Islam and K. Murase, A comparative study of data sampling techniques for constructing neural network ensembles. Int. J. Neural Syst. 19(2) (2009) 67-89.
    • (2009) Int. J. Neural Syst. , vol.19 , Issue.2 , pp. 67-89
    • Akhand, M.A.H.1    Islam, M.M.2    Murase, K.3
  • 8
    • 84856050339 scopus 로고    scopus 로고
    • Kazuyuki Murase Ensembles of neural networks based on the alteration of input feature values
    • M. A. H. Akhand and Kazuyuki Murase, Ensembles of neural networks based on the alteration of input feature values, Int. J. Neural Syst. 22(1) (2012) 77-87.
    • (2012) Int. J. Neural Syst. , vol.22 , Issue.1 , pp. 77-87
    • Akhand, M.A.H.1
  • 10
    • 38349123053 scopus 로고    scopus 로고
    • Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection
    • S. Ghosh-Dastidar, H. Adeli and N. Dadmehr, Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection, IEEE Trans. Biomed. Eng. 55(2) (2008) 512-518.
    • (2008) IEEE Trans. Biomed. Eng. , vol.55 , Issue.2 , pp. 512-518
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 11
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Mach. Learn. 24(2) (1996) 123-140. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 13
    • 77958025792 scopus 로고    scopus 로고
    • Designing boosting ensemble of relational fuzzy systems
    • R. Scherer, Designing boosting ensemble of relational fuzzy systems, Int. J. Neural Syst. 20(5) (2010) 381-388.
    • (2010) Int. J. Neural Syst. , vol.20 , Issue.5 , pp. 381-388
    • Scherer, R.1
  • 14
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire, The strength of weak learnability, Mach. Learn. 5(2) (1990) 197-227.
    • (1990) Mach. Learn. , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 16
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets
    • DOI 10.1016/S0031-3203(02)00121-8, PII S0031320302001218
    • R. K. Bryll, R. Gutierrez-Osuna and F. K. H. Quek, Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets, Pattern Recogn. 36(6) (2003) 1291-1302. (Pubitemid 36225868)
    • (2003) Pattern Recognition , vol.36 , Issue.6 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 17
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman, Random forests, Mach. Learn. 45(1) (2001) 5-32. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 18
    • 0036080160 scopus 로고    scopus 로고
    • Bagging, boosting and the random subspace method for linear classifiers
    • DOI 10.1007/s100440200011
    • M. Skurichina and R. P. W. Duin, Bagging, boosting and the random subspace method for linear classifiers, Pattern Anal. Appl. 5(2) (2002) 121-135. (Pubitemid 40830126)
    • (2002) Pattern Analysis and Applications , vol.5 , Issue.2 , pp. 121-135
    • Skurichina, M.1    Duin, R.P.W.2
  • 19
    • 33744958288 scopus 로고    scopus 로고
    • Nearest neighbor classification from multiple feature subsets
    • DOI 10.1016/S1088-467X(99)00018-9
    • S. D. Bay, Nearest neighbor classification from multiple feature subsets, Intell. Data Anal. 3(3) (1999) 191-209. (Pubitemid 33260733)
    • (1999) Intelligent data analysis , vol.3 , Issue.3 , pp. 191-209
    • Bay, S.D.1
  • 20
    • 10044289194 scopus 로고    scopus 로고
    • Optimizing nearest neighbour in random subspaces using a multi-objective genetic algorithm
    • IEEE Computer Society, Washington, DC, USA
    • G. Tremblay, R. Sabourin and P. Maupin, Optimizing nearest neighbour in random subspaces using a multi-objective genetic algorithm, in Proc. 17th Int. Conf. Pattern Recognition (ICPR'04), Vol. 1 (IEEE Computer Society, Washington, DC, USA, 2004), p. 208.
    • (2004) Proc. 17th Int. Conf. Pattern Recognition (ICPR'04) , vol.1 , pp. 208
    • Tremblay, G.1    Sabourin, R.2    Maupin, P.3
  • 24
    • 70350581242 scopus 로고    scopus 로고
    • Algorithm of designing compound recognition system on the basis of combining classifiers with simultaneous splitting feature space into competence areas
    • K. Jackowski and M. Wózniak, Algorithm of designing compound recognition system on the basis of combining classifiers with simultaneous splitting feature space into competence areas, Pattern Anal. Appl. 12(4) (2009) 415-425.
    • (2009) Pattern Anal. Appl. , vol.12 , Issue.4 , pp. 415-425
    • Jackowski, K.1    Wózniak, M.2
  • 26
    • 34848849013 scopus 로고    scopus 로고
    • Fingerprint classification using one-vs-all support vector machines dynamically ordered with naïve bayes classifiers
    • J. H. Hong, J. K. Min, U. K. Cho and S. B. Cho, Fingerprint classification using one-vs-all support vector machines dynamically ordered with naïve bayes classifiers, Pattern Recogn. 41 (2008) 662-671.
    • (2008) Pattern Recogn. , vol.41 , pp. 662-671
    • Hong, J.H.1    Min, J.K.2    Cho, U.K.3    Cho, S.B.4
  • 27
    • 84994037050 scopus 로고    scopus 로고
    • Dynamic classifier selection based on multiple classifier behaviour
    • G. Giacinto and F. Roli, Dynamic classifier selection based on multiple classifier behaviour, Pattern Recogn. 34(9) (2001) 1879-1881.
    • (2001) Pattern Recogn. , vol.34 , Issue.9 , pp. 1879-1881
    • Giacinto, G.1    Roli, F.2
  • 28
    • 56349116856 scopus 로고    scopus 로고
    • Empirical comparison of dynamic classifier selection methods based on diversity and accuracy for building ensembles
    • (IEEE World Congress on Computational Intelligence 2008) June
    • M. de Souto, R. Soares, A. Santana and A. Canuto, Empirical comparison of dynamic classifier selection methods based on diversity and accuracy for building ensembles, IEEE Int. Joint Conf. Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence) (2008) June 2008, pp. 1480-1487.
    • (2008) IEEE Int. Joint Conf. Neural Networks 2008. IJCNN 2008 , pp. 1480-1487
    • De Souto, M.1    Soares, R.2    Santana, A.3    Canuto, A.4
  • 29
    • 84858073995 scopus 로고    scopus 로고
    • A measure of competence based on random classification for dynamic ensemble selection
    • T. Woloszynski, M. Kurzynski, P. Podsiadlo and G. W. Stachowiak, A measure of competence based on random classification for dynamic ensemble selection. Inform. Fusion 13(3) (2012) 207-213.
    • (2012) Inform. Fusion , vol.13 , Issue.3 , pp. 207-213
    • Woloszynski, T.1    Kurzynski, M.2    Podsiadlo, P.3    Stachowiak, G.W.4
  • 30
    • 77951774214 scopus 로고    scopus 로고
    • Method of classifier selection using the genetic approach
    • K. Jackowski and M. Wózniak, Method of classifier selection using the genetic approach, Exp. Syst. 27(2) (2010) 114-128.
    • (2010) Exp. Syst. , vol.27 , Issue.2 , pp. 114-128
    • Jackowski, K.1    Wózniak, M.2
  • 31
    • 84870951760 scopus 로고    scopus 로고
    • Combined classifier based on feature space partitioning
    • M. Wózniak and B. Krawczyk, Combined classifier based on feature space partitioning, J. Appl. Math. Comput. Sci. 22(4) (2012) 855-866.
    • (2012) J. Appl. Math. Comput. Sci. , vol.22 , Issue.4 , pp. 855-866
    • Wózniak, M.1    Krawczyk, B.2
  • 32
    • 84865030862 scopus 로고    scopus 로고
    • Cost-sensitive splitting and selection method for medical decision support system
    • eds. H. Yin, J. A. F. Costa and G. Barreto, of Lecture Notes in Computer Science Springer Berlin Heidelberg
    • K. Jackowski, B. Krawczyk and M. Wózniak, Cost-sensitive splitting and selection method for medical decision support system, in Intelligent Data Engineering and Automated Learning-IDEAL 2012, eds. H. Yin, J. A. F. Costa and G. Barreto, of Lecture Notes in Computer Science, Vol. 7435 (Springer Berlin Heidelberg, 2012), pp. 850-857.
    • (2012) Intelligent Data Engineering and Automated Learning-IDEAL 2012 , vol.7435 , pp. 850-857
    • Jackowski, K.1    Krawczyk, B.2    Wózniak, M.3
  • 34
    • 77958031946 scopus 로고    scopus 로고
    • Enhanced probabilistic neural network with local decision circles: A robust classifier
    • M. Ahmadlou and H. Adeli, Enhanced probabilistic neural network with local decision circles: A robust classifier, Integr. Comput.-Aided Eng. 17(3) (2010) 197-210.
    • (2010) Integr. Comput.-Aided Eng. , vol.17 , Issue.3 , pp. 197-210
    • Ahmadlou, M.1    Adeli, H.2
  • 37
    • 34250080806 scopus 로고
    • A weighted nearest neighbor algorithm for learning with symbolic features
    • S. Cost and S. Salzberg, A weighted nearest neighbor algorithm for learning with symbolic features, Mach. Learn. 10 (1993) 57-78.
    • (1993) Mach. Learn. , vol.10 , pp. 57-78
    • Cost, S.1    Salzberg, S.2
  • 42
    • 84855199947 scopus 로고    scopus 로고
    • R Development Core Team R R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2008).
    • (2008) A Language and Environment for Statistical Computing
  • 43
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5×2 cv f test for comparing supervised classification learning algorithms
    • E. Alpaydin, Combined 5×2 cv f test for comparing supervised classification learning algorithms, Neural Comput. 11(8) (1999) 1885-1892.
    • (1999) Neural Comput. , vol.11 , Issue.8 , pp. 1885-1892
    • Alpaydin, E.1
  • 44
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (2006) 1-30. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.