메뉴 건너뛰기




Volumn 20, Issue 5, 2010, Pages 381-388

Designing boosting ensemble of relational fuzzy systems

Author keywords

ensembles of classifiers; machine learning; Neuro fuzzy systems

Indexed keywords

ADABOOST; BINARY RELATION; BOOSTING ENSEMBLES; CLASSIFICATION ACCURACY; CLASSIFICATION SYSTEM; ENSEMBLES OF CLASSIFIERS; FUZZY IF-THEN RULES; FUZZY LINGUISTICS; FUZZY RELATION MATRIXES; INPUT AND OUTPUTS; MACHINE-LEARNING; NEURO-FUZZY CLASSIFIERS; NEUROFUZZY SYSTEM; NOVEL DESIGN; RULE BASIS;

EID: 77958025792     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0129065710002528     Document Type: Article
Times cited : (32)

References (35)
  • 1
    • 67650085798 scopus 로고    scopus 로고
    • A comparative study of data sampling techniques for constructing neural network ensembles
    • M. A. H. Akhand, MD. M. Islam and K. Murase, A comparative study of data sampling techniques for constructing neural network ensembles, International Journal of Neural Systems 19(2) (2009) 67-89.
    • (2009) International Journal of Neural Systems , vol.19 , Issue.2 , pp. 67-89
    • Akhand, M.A.H.1    Islam, M.D.M.2    Murase, K.3
  • 2
    • 36948999941 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science
    • A. Asuncion and D. J. Newman, UCI machine learning repository, [http://www.ics.uci.edu/?mlearn/ MLRepository.html] Irvine, CA: University of California, School of Information and Computer Science (2007).
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 7
    • 0033876139 scopus 로고    scopus 로고
    • A fuzzy relational identification algorithm and its application to predict the behaviour of a motor drive system
    • P. J. C. Branco and J. A. Dente, A fuzzy relational identification algorithm and its application to predict the behaviour of a motor drive system, Fuzzy Sets and Systems 109 (2000) 343-354.
    • (2000) Fuzzy Sets and Systems , vol.109 , pp. 343-354
    • Branco, P.J.C.1    Dente, J.A.2
  • 8
    • 0003619255 scopus 로고    scopus 로고
    • Bias, variance, and arcing classifiers
    • Statistics Department, University of California
    • L. Breiman, Bias, variance, and arcing classifiers, Technical Report 460, Statistics Department, University of California (1997).
    • (1997) Technical Report 460
    • Breiman, L.1
  • 10
    • 33744825481 scopus 로고    scopus 로고
    • Fuzzy relational neural network for data analysis
    • Springer Berlin-Heidelberg, DOI 10.1007. 10983652
    • A. Ciaramella, R. Tagliaferri, W. Pedrycz and A. Di Nola, Fuzzy relational neural network for data analysis, Lecture Notes in Computer Science 2955, Springer Berlin-Heidelberg, DOI 10.1007. 10983652 14, pp. 103-109.
    • Lecture Notes in Computer Science , vol.2955 , Issue.14 , pp. 103-109
    • Ciaramella, A.1    Tagliaferri, R.2    Pedrycz, W.3    Di Nola, A.4
  • 15
    • 70350591170 scopus 로고    scopus 로고
    • Neurofuzzy rough classifier ensemble
    • Springer
    • M. Korytkowski, R. Nowicki and R. Scherer, Neurofuzzy Rough Classifier Ensemble, Springer LNCS, Vol.5768/2009, pp. 817-823.
    • (2009) LNCS , vol.5768 , pp. 817-823
    • Korytkowski, M.1    Nowicki, R.2    Scherer, R.3
  • 18
    • 73949093713 scopus 로고    scopus 로고
    • Global exponential stability of fuzzy interval delayed neural networks with impulses on time scales
    • Y. Li and T. Zhang, Global exponential stability of fuzzy interval delayed neural networks with impulses on time scales, International Journal of Neural Systems 19(6) (2009) 449-456.
    • (2009) International Journal of Neural Systems , vol.19 , Issue.6 , pp. 449-456
    • Li, Y.1    Zhang, T.2
  • 24
  • 27
    • 72149126839 scopus 로고    scopus 로고
    • Neuro-fuzzy relational systems for nonlinear approximation and prediction
    • doi:10.1016/ j.na.2009.01.180
    • R. Scherer, Neuro-fuzzy relational systems for nonlinear approximation and prediction, Nonlinear Analysis 71 (2009) e1420-e1425, doi:10.1016/ j.na.2009.01.180.
    • (2009) Nonlinear Analysis , vol.71
    • Scherer, R.1
  • 28
    • 35048861316 scopus 로고    scopus 로고
    • Relational equations initializing neuro-fuzzy system
    • Zittau, Germany
    • R. Scherer and L. Rutkowski, Relational equations initializing neuro-fuzzy system, 10th Zittau Fuzzy Colloquium, Zittau, Germany (2002).
    • (2002) 10th Zittau Fuzzy Colloquium
    • Scherer, R.1    Rutkowski, L.2
  • 30
    • 9444222609 scopus 로고    scopus 로고
    • Neuro-fuzzy relational classifiers
    • Springer-Verlag Heidelberg
    • R. Scherer and L. Rutkowski, Neuro-fuzzy relational classifiers, Lecture Notes in Artificial Intelligence, Springer-Verlag Heidelberg 3070 (2004) 376-380.
    • (2004) Lecture Notes in Artificial Intelligence , vol.3070 , pp. 376-380
    • Scherer, R.1    Rutkowski, L.2
  • 31
    • 33746267897 scopus 로고    scopus 로고
    • Boosting ensemble of relational neurofuzzy systems
    • R. Scherer, Boosting ensemble of relational neurofuzzy systems, Lecture Notes in Computer Science 4029 (2006) 306-313.
    • (2006) Lecture Notes in Computer Science , vol.4029 , pp. 306-313
    • Scherer, R.1
  • 35
    • 0344473409 scopus 로고
    • On a flexible structure for fuzzy systems models
    • (R. R. Yager, L. A. Zadeh, eds.), Van Nostrand Reinhold, New York
    • R. R. Yager and D. P. Filev, On a flexible structure for fuzzy systems models, in Fuzzy Sets, Neural Networks, and Soft Computing (R. R. Yager, L. A. Zadeh, eds.),Van Nostrand Reinhold, New York (1994) 1-28.
    • (1994) Fuzzy Sets, Neural Networks, and Soft Computing , pp. 1-28
    • Yager, R.R.1    Filev, D.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.