메뉴 건너뛰기




Volumn 22, Issue 3, 2014, Pages 157-163

Emerging roles of immunostimulatory oral bacteria in periodontitis development

Author keywords

Alveolar bone absorption; Innate immunity; Neutrophil recruitment; NOD1; Pathobiont; Periodontitis

Indexed keywords

CASPASE RECRUITMENT DOMAIN PROTEIN 4; COMPLEMENT COMPONENT C3A; COMPLEMENT COMPONENT C5A; SULFAMETHOXAZOLE; TOLL LIKE RECEPTOR 2; TOLL LIKE RECEPTOR 4; TRIMETHOPRIM;

EID: 84896715308     PISSN: 0966842X     EISSN: 18784380     Source Type: Journal    
DOI: 10.1016/j.tim.2013.12.005     Document Type: Review
Times cited : (31)

References (70)
  • 1
    • 84866507629 scopus 로고    scopus 로고
    • Prevalence of periodontitis in adults in the United States: 2009 and 2010
    • Eke P.I., et al. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J. Dent. Res. 2012, 91:914-920.
    • (2012) J. Dent. Res. , vol.91 , pp. 914-920
    • Eke, P.I.1
  • 2
    • 77953616099 scopus 로고    scopus 로고
    • Periodontitis: a polymicrobial disruption of host homeostasis
    • Darveau R.P. Periodontitis: a polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 2010, 8:481-490.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 481-490
    • Darveau, R.P.1
  • 3
    • 77955745849 scopus 로고    scopus 로고
    • Aggregatibacter (Actinobacillus) actinomycetemcomitans: a triple A* periodontopathogen?
    • Henderson B., et al. Aggregatibacter (Actinobacillus) actinomycetemcomitans: a triple A* periodontopathogen?. Periodontology 2010, 54:78-105.
    • (2010) Periodontology , vol.54 , pp. 78-105
    • Henderson, B.1
  • 4
    • 0031989077 scopus 로고    scopus 로고
    • Microbial complexes in subgingival plaque
    • Socransky S.S., et al. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 1998, 25:134-144.
    • (1998) J. Clin. Periodontol. , vol.25 , pp. 134-144
    • Socransky, S.S.1
  • 5
    • 77953620116 scopus 로고    scopus 로고
    • Oral multispecies biofilm development and the key role of cell-cell distance
    • Kolenbrander P.E., et al. Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol. 2010, 8:471-480.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 471-480
    • Kolenbrander, P.E.1
  • 6
    • 84869006781 scopus 로고    scopus 로고
    • Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology
    • Hajishengallis G., Lamont R.J. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol. Oral Microbiol. 2012, 27:409-419.
    • (2012) Mol. Oral Microbiol. , vol.27 , pp. 409-419
    • Hajishengallis, G.1    Lamont, R.J.2
  • 7
    • 84865276077 scopus 로고    scopus 로고
    • Porphyromonas gingivalis as a potential community activist for disease
    • Darveau R.P., et al. Porphyromonas gingivalis as a potential community activist for disease. J. Dent. Res. 2012, 91:816-820.
    • (2012) J. Dent. Res. , vol.91 , pp. 816-820
    • Darveau, R.P.1
  • 8
    • 0034992657 scopus 로고    scopus 로고
    • Bacterial diversity in human subgingival plaque
    • Paster B.J., et al. Bacterial diversity in human subgingival plaque. J. Bacteriol. 2001, 183:3770-3783.
    • (2001) J. Bacteriol. , vol.183 , pp. 3770-3783
    • Paster, B.J.1
  • 9
    • 84861342868 scopus 로고    scopus 로고
    • Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing
    • Griffen A.L., et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 2012, 6:1176-1185.
    • (2012) ISME J. , vol.6 , pp. 1176-1185
    • Griffen, A.L.1
  • 10
    • 84876842615 scopus 로고    scopus 로고
    • The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation
    • Abusleme L., et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013, 7:1016-1025.
    • (2013) ISME J. , vol.7 , pp. 1016-1025
    • Abusleme, L.1
  • 11
    • 0030781216 scopus 로고    scopus 로고
    • Cloning, expression, and sequencing of a protease gene from Bacteroides forsythus ATCC 43037 in Escherichia coli
    • Saito T., et al. Cloning, expression, and sequencing of a protease gene from Bacteroides forsythus ATCC 43037 in Escherichia coli. Infect. Immun. 1997, 65:4888-4891.
    • (1997) Infect. Immun. , vol.65 , pp. 4888-4891
    • Saito, T.1
  • 12
    • 0035192014 scopus 로고    scopus 로고
    • Role of RgpA, RgpB, and Kgp proteinases in virulence of Porphyromonas gingivalis W50 in a murine lesion model
    • O'Brien-Simpson N.M., et al. Role of RgpA, RgpB, and Kgp proteinases in virulence of Porphyromonas gingivalis W50 in a murine lesion model. Infect. Immun. 2001, 69:7527-7534.
    • (2001) Infect. Immun. , vol.69 , pp. 7527-7534
    • O'Brien-Simpson, N.M.1
  • 13
    • 0035192042 scopus 로고    scopus 로고
    • Prevention of Porphyromonas gingivalis-induced oral bone loss following immunization with gingipain R1
    • Gibson F.C., et al. Prevention of Porphyromonas gingivalis-induced oral bone loss following immunization with gingipain R1. Infect. Immun. 2001, 69:7959-7963.
    • (2001) Infect. Immun. , vol.69 , pp. 7959-7963
    • Gibson, F.C.1
  • 14
    • 34548502272 scopus 로고    scopus 로고
    • The chymotrypsin-like protease complex of Treponema denticola ATCC 35405 mediates fibrinogen adherence and degradation
    • Bamford C.V., et al. The chymotrypsin-like protease complex of Treponema denticola ATCC 35405 mediates fibrinogen adherence and degradation. Infect. Immun. 2007, 75:4364-4372.
    • (2007) Infect. Immun. , vol.75 , pp. 4364-4372
    • Bamford, C.V.1
  • 15
    • 0033982988 scopus 로고    scopus 로고
    • Characterization of Porphyromonas gingivalis-induced degradation of epithelial cell junctional complexes
    • Katz J., et al. Characterization of Porphyromonas gingivalis-induced degradation of epithelial cell junctional complexes. Infect. Immun. 2000, 68:1441-1449.
    • (2000) Infect. Immun. , vol.68 , pp. 1441-1449
    • Katz, J.1
  • 16
    • 78649612848 scopus 로고    scopus 로고
    • Effects of Porphyromonas gingivalis infection on human gingival epithelial barrier function in vitro
    • Groeger S., et al. Effects of Porphyromonas gingivalis infection on human gingival epithelial barrier function in vitro. Eur. J. Oral Sci. 2010, 118:582-589.
    • (2010) Eur. J. Oral Sci. , vol.118 , pp. 582-589
    • Groeger, S.1
  • 17
    • 37349040358 scopus 로고    scopus 로고
    • Interspecies interactions within oral microbial communities
    • Kuramitsu H.K., et al. Interspecies interactions within oral microbial communities. Microbiol. Mol. Biol. Rev. 2007, 71:653-670.
    • (2007) Microbiol. Mol. Biol. Rev. , vol.71 , pp. 653-670
    • Kuramitsu, H.K.1
  • 18
    • 58149505597 scopus 로고    scopus 로고
    • Metabolic network model of a human oral pathogen
    • Mazumdar V., et al. Metabolic network model of a human oral pathogen. J. Bacteriol. 2009, 191:74-90.
    • (2009) J. Bacteriol. , vol.191 , pp. 74-90
    • Mazumdar, V.1
  • 19
    • 0028279420 scopus 로고
    • Animal models for periodontal disease
    • Madden T.E., Caton J.G. Animal models for periodontal disease. Methods Enzymol. 1994, 235:106-119.
    • (1994) Methods Enzymol. , vol.235 , pp. 106-119
    • Madden, T.E.1    Caton, J.G.2
  • 20
    • 38149006156 scopus 로고    scopus 로고
    • The use of rodent models to investigate host-bacteria interactions related to periodontal diseases
    • Graves D.T., et al. The use of rodent models to investigate host-bacteria interactions related to periodontal diseases. J. Clin. Periodontol. 2008, 35:89-105.
    • (2008) J. Clin. Periodontol. , vol.35 , pp. 89-105
    • Graves, D.T.1
  • 21
    • 0028675657 scopus 로고
    • Oral infection with Porphyromonas gingivalis and induced alveolar bone loss in immunocompetent and severe combined immunodeficient mice
    • Baker P.J., et al. Oral infection with Porphyromonas gingivalis and induced alveolar bone loss in immunocompetent and severe combined immunodeficient mice. Arch. Oral Biol. 1994, 39:1035-1040.
    • (1994) Arch. Oral Biol. , vol.39 , pp. 1035-1040
    • Baker, P.J.1
  • 22
    • 64949196013 scopus 로고    scopus 로고
    • Mouse model of experimental periodontitis induced by Porphyromonas gingivalis/Fusobacterium nucleatum infection: bone loss and host response
    • Polak D., et al. Mouse model of experimental periodontitis induced by Porphyromonas gingivalis/Fusobacterium nucleatum infection: bone loss and host response. J. Clin. Periodontol. 2009, 36:406-410.
    • (2009) J. Clin. Periodontol. , vol.36 , pp. 406-410
    • Polak, D.1
  • 23
    • 78650892286 scopus 로고    scopus 로고
    • Structural dissection and in vivo effectiveness of a peptide inhibitor of Porphyromonas gingivalis adherence to Streptococcus gordonii
    • Daep C.A., et al. Structural dissection and in vivo effectiveness of a peptide inhibitor of Porphyromonas gingivalis adherence to Streptococcus gordonii. Infect. Immun. 2011, 79:67-74.
    • (2011) Infect. Immun. , vol.79 , pp. 67-74
    • Daep, C.A.1
  • 24
    • 84864803144 scopus 로고    scopus 로고
    • Fusobacterium nucleatum and Tannerella forsythia induce synergistic alveolar bone loss in a mouse periodontitis model
    • Settem R.P., et al. Fusobacterium nucleatum and Tannerella forsythia induce synergistic alveolar bone loss in a mouse periodontitis model. Infect. Immun. 2012, 80:2436-2443.
    • (2012) Infect. Immun. , vol.80 , pp. 2436-2443
    • Settem, R.P.1
  • 25
    • 1842588018 scopus 로고    scopus 로고
    • Porphyromonas gingivalis-specific immunoglobulin G prevents P. gingivalis-elicited oral bone loss in a murine model
    • Gibson F.C., et al. Porphyromonas gingivalis-specific immunoglobulin G prevents P. gingivalis-elicited oral bone loss in a murine model. Infect. Immun. 2004, 72:2408-2411.
    • (2004) Infect. Immun. , vol.72 , pp. 2408-2411
    • Gibson, F.C.1
  • 26
    • 58149391128 scopus 로고    scopus 로고
    • INOS-derived nitric oxide modulates infection-stimulated bone loss
    • Fukada S.Y., et al. iNOS-derived nitric oxide modulates infection-stimulated bone loss. J. Dent. Res. 2008, 87:1155-1159.
    • (2008) J. Dent. Res. , vol.87 , pp. 1155-1159
    • Fukada, S.Y.1
  • 27
    • 0034079236 scopus 로고    scopus 로고
    • Adhesion molecule deficiencies increase Porphyromonas gingivalis-induced alveolar bone loss in mice
    • Baker P.J., et al. Adhesion molecule deficiencies increase Porphyromonas gingivalis-induced alveolar bone loss in mice. Infect. Immun. 2000, 68:3103-33107.
    • (2000) Infect. Immun. , vol.68 , pp. 3103-33107
    • Baker, P.J.1
  • 28
    • 77955883153 scopus 로고    scopus 로고
    • Complement: a key system for immune surveillance and homeostasis
    • Ricklin D., et al. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 2010, 11:785-797.
    • (2010) Nat. Immunol. , vol.11 , pp. 785-797
    • Ricklin, D.1
  • 29
    • 84985759075 scopus 로고
    • Bone resorption stimulated by lipopolysaccharides from Bacteroides, Fusobacterium and Veillonella, and by the lipid A and the polysaccharide part of Fusobacterium lipopolysaccharide
    • Sveen K., Skaug N. Bone resorption stimulated by lipopolysaccharides from Bacteroides, Fusobacterium and Veillonella, and by the lipid A and the polysaccharide part of Fusobacterium lipopolysaccharide. Scand. J. Dent. Res. 1980, 88:535-542.
    • (1980) Scand. J. Dent. Res. , vol.88 , pp. 535-542
    • Sveen, K.1    Skaug, N.2
  • 30
    • 0037779034 scopus 로고    scopus 로고
    • Cot/Tpl2 is essential for RANKL induction by lipid A in osteoblasts
    • Kikuchi T., et al. Cot/Tpl2 is essential for RANKL induction by lipid A in osteoblasts. J. Dent. Res. 2003, 82:546-550.
    • (2003) J. Dent. Res. , vol.82 , pp. 546-550
    • Kikuchi, T.1
  • 31
    • 0032986491 scopus 로고    scopus 로고
    • + T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice
    • + T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infect. Immun. 1999, 67:2804-2809.
    • (1999) Infect. Immun. , vol.67 , pp. 2804-2809
    • Baker, P.J.1
  • 32
    • 84869755800 scopus 로고    scopus 로고
    • Targeting interleukin-6: all the way to treat autoimmune and inflammatory diseases
    • Tanaka T., et al. Targeting interleukin-6: all the way to treat autoimmune and inflammatory diseases. Int. J. Biol. Sci. 2012, 8:1227-1236.
    • (2012) Int. J. Biol. Sci. , vol.8 , pp. 1227-1236
    • Tanaka, T.1
  • 33
    • 0032584208 scopus 로고    scopus 로고
    • Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL
    • Yasuda H., et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:3597-3602.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 3597-3602
    • Yasuda, H.1
  • 34
    • 33748788554 scopus 로고    scopus 로고
    • B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease
    • Kawai T., et al. B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease. Am. J. Pathol. 2006, 169:987-998.
    • (2006) Am. J. Pathol. , vol.169 , pp. 987-998
    • Kawai, T.1
  • 35
    • 0031005576 scopus 로고    scopus 로고
    • Osteoprotegerin: a novel secreted protein involved in the regulation of bone density
    • Simonet W.S., et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997, 89:309-319.
    • (1997) Cell , vol.89 , pp. 309-319
    • Simonet, W.S.1
  • 36
    • 19744362921 scopus 로고    scopus 로고
    • + Th-cell-mediated alveolar bone destruction in vivo
    • + Th-cell-mediated alveolar bone destruction in vivo. Infect. Immun. 2005, 73:3453-3461.
    • (2005) Infect. Immun. , vol.73 , pp. 3453-3461
    • Teng, Y.T.1
  • 37
    • 84877871524 scopus 로고    scopus 로고
    • Induction of bone loss by pathobiont-mediated NOD1 signaling in the oral cavity
    • Jiao Y., et al. Induction of bone loss by pathobiont-mediated NOD1 signaling in the oral cavity. Cell Host Microbe 2013, 13:595-601.
    • (2013) Cell Host Microbe , vol.13 , pp. 595-601
    • Jiao, Y.1
  • 38
    • 77950343791 scopus 로고    scopus 로고
    • Pattern recognition receptors and inflammation
    • Takeuchi O., et al. Pattern recognition receptors and inflammation. Cell 2010, 140:805-820.
    • (2010) Cell , vol.140 , pp. 805-820
    • Takeuchi, O.1
  • 39
    • 79251544574 scopus 로고    scopus 로고
    • The C5a receptor impairs IL-12-dependent clearance of Porphyromonas gingivalis and is required for induction of periodontal bone loss
    • Liang S., et al. The C5a receptor impairs IL-12-dependent clearance of Porphyromonas gingivalis and is required for induction of periodontal bone loss. J. Immunol. 2011, 186:869-877.
    • (2011) J. Immunol. , vol.186 , pp. 869-877
    • Liang, S.1
  • 40
    • 84869761067 scopus 로고    scopus 로고
    • Local complement-targeted intervention in periodontitis: proof-of-concept using a C5a receptor (CD88) antagonist
    • Abe T., et al. Local complement-targeted intervention in periodontitis: proof-of-concept using a C5a receptor (CD88) antagonist. J. Immunol. 2012, 189:5442-5448.
    • (2012) J. Immunol. , vol.189 , pp. 5442-5448
    • Abe, T.1
  • 41
    • 84872725017 scopus 로고    scopus 로고
    • Macrophage-specific TLR2 signaling mediates pathogen-induced TNF-dependent inflammatory oral bone loss
    • Papadopoulos G., et al. Macrophage-specific TLR2 signaling mediates pathogen-induced TNF-dependent inflammatory oral bone loss. J. Immunol. 2013, 190:1148-1157.
    • (2013) J. Immunol. , vol.190 , pp. 1148-1157
    • Papadopoulos, G.1
  • 42
    • 84878245532 scopus 로고    scopus 로고
    • Toll-like receptor-2 plays a fundamental role in periodontal bacteria-accelerated abdominal aortic aneurysms
    • Aoyama N., et al. Toll-like receptor-2 plays a fundamental role in periodontal bacteria-accelerated abdominal aortic aneurysms. Circ. J. 2013, 77:1565-1573.
    • (2013) Circ. J. , vol.77 , pp. 1565-1573
    • Aoyama, N.1
  • 43
    • 34249799593 scopus 로고    scopus 로고
    • Biphasic effect of gingipains from Porphyromonas gingivalis on the human complement system
    • Popadiak K., et al. Biphasic effect of gingipains from Porphyromonas gingivalis on the human complement system. J. Immunol. 2007, 178:7242-7250.
    • (2007) J. Immunol. , vol.178 , pp. 7242-7250
    • Popadiak, K.1
  • 44
    • 84863393385 scopus 로고    scopus 로고
    • The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss
    • Eskan M.A., et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat. Immunol. 2012, 13:465-473.
    • (2012) Nat. Immunol. , vol.13 , pp. 465-473
    • Eskan, M.A.1
  • 45
    • 31944437924 scopus 로고    scopus 로고
    • NOD1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo
    • Masumoto J., et al. NOD1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo. J. Exp. Med. 2006, 203:203-213.
    • (2006) J. Exp. Med. , vol.203 , pp. 203-213
    • Masumoto, J.1
  • 46
    • 33749384363 scopus 로고    scopus 로고
    • Differential release and distribution of NOD1 and NOD2 immunostimulatory molecules among bacterial species and environments
    • Hasegawa M., et al. Differential release and distribution of NOD1 and NOD2 immunostimulatory molecules among bacterial species and environments. J. Biol. Chem. 2006, 281:29054-29063.
    • (2006) J. Biol. Chem. , vol.281 , pp. 29054-29063
    • Hasegawa, M.1
  • 47
    • 81755166205 scopus 로고    scopus 로고
    • Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement
    • Hajishengallis G., et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 2011, 10:497-506.
    • (2011) Cell Host Microbe , vol.10 , pp. 497-506
    • Hajishengallis, G.1
  • 48
    • 0013978710 scopus 로고
    • The influence of bacteria and irritation in the initiation of periodontal disease in germ-free and conventional rats
    • Rovin S., et al. The influence of bacteria and irritation in the initiation of periodontal disease in germ-free and conventional rats. J. Periodontal Res. 1966, 1:193-204.
    • (1966) J. Periodontal Res. , vol.1 , pp. 193-204
    • Rovin, S.1
  • 49
    • 73949133993 scopus 로고    scopus 로고
    • The molecular basis of the host response to lipopolysaccharide
    • Bryant C.E., et al. The molecular basis of the host response to lipopolysaccharide. Nat. Rev. Microbiol. 2010, 8:8-14.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 8-14
    • Bryant, C.E.1
  • 50
    • 84875517343 scopus 로고    scopus 로고
    • A novel class of lipoprotein lipase-sensitive molecules mediates Toll-like receptor 2 activation by Porphyromonas gingivalis
    • Jain S., et al. A novel class of lipoprotein lipase-sensitive molecules mediates Toll-like receptor 2 activation by Porphyromonas gingivalis. Infect. Immun. 2013, 81:1277-1286.
    • (2013) Infect. Immun. , vol.81 , pp. 1277-1286
    • Jain, S.1
  • 51
    • 0025808155 scopus 로고
    • Investigation of the structure of lipid A from Actinobacillus actinomycetemcomitans strain Y4 and human clinical isolate PO 1021-7
    • Masoud H., et al. Investigation of the structure of lipid A from Actinobacillus actinomycetemcomitans strain Y4 and human clinical isolate PO 1021-7. Eur. J. Biochem. 1991, 200:775-781.
    • (1991) Eur. J. Biochem. , vol.200 , pp. 775-781
    • Masoud, H.1
  • 52
    • 75949091421 scopus 로고    scopus 로고
    • The essential role of toll like receptor-4 in the control of Aggregatibacter actinomycetemcomitans infection in mice
    • Lima H.R., et al. The essential role of toll like receptor-4 in the control of Aggregatibacter actinomycetemcomitans infection in mice. J. Clin. Periodontol. 2010, 37:248-254.
    • (2010) J. Clin. Periodontol. , vol.37 , pp. 248-254
    • Lima, H.R.1
  • 53
    • 0036954037 scopus 로고    scopus 로고
    • Recognition of lipopeptides by Toll-like receptors
    • Takeda K., et al. Recognition of lipopeptides by Toll-like receptors. J. Endotoxin Res. 2002, 8:459-463.
    • (2002) J. Endotoxin Res. , vol.8 , pp. 459-463
    • Takeda, K.1
  • 54
    • 84859560525 scopus 로고    scopus 로고
    • Peptidoglycan as NOD1 ligand; fragment structures in the environment, chemical synthesis, and their innate immunostimulation
    • Fujimoto Y., et al. Peptidoglycan as NOD1 ligand; fragment structures in the environment, chemical synthesis, and their innate immunostimulation. Nat. Prod. Rep. 2012, 29:568-579.
    • (2012) Nat. Prod. Rep. , vol.29 , pp. 568-579
    • Fujimoto, Y.1
  • 55
    • 79955048935 scopus 로고    scopus 로고
    • Nucleotide-binding oligomerization domain 1 mediates recognition of Clostridium difficile and induces neutrophil recruitment and protection against the pathogen
    • Hasegawa M., et al. Nucleotide-binding oligomerization domain 1 mediates recognition of Clostridium difficile and induces neutrophil recruitment and protection against the pathogen. J. Immunol. 2011, 186:4872-4880.
    • (2011) J. Immunol. , vol.186 , pp. 4872-4880
    • Hasegawa, M.1
  • 56
    • 0015462556 scopus 로고
    • Peptidoglycan types of bacterial cell walls and their taxonomic implications
    • Schleifer K.H., et al. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 1972, 36:407-477.
    • (1972) Bacteriol. Rev. , vol.36 , pp. 407-477
    • Schleifer, K.H.1
  • 57
    • 76749110853 scopus 로고    scopus 로고
    • Transitions in oral and intestinal microflora composition and innate immune receptor-dependent stimulation during mouse development
    • Hasegawa M., et al. Transitions in oral and intestinal microflora composition and innate immune receptor-dependent stimulation during mouse development. Infect. Immun. 2010, 78:639-650.
    • (2010) Infect. Immun. , vol.78 , pp. 639-650
    • Hasegawa, M.1
  • 58
    • 0037858060 scopus 로고    scopus 로고
    • Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli
    • Höltje J.V. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 1998, 62:181-203.
    • (1998) Microbiol. Mol. Biol. Rev. , vol.62 , pp. 181-203
    • Höltje, J.V.1
  • 59
    • 38849087905 scopus 로고    scopus 로고
    • Muramylpeptide shedding modulates cell sensing of Shigella flexneri
    • Nigro G., et al. Muramylpeptide shedding modulates cell sensing of Shigella flexneri. Cell. Microbiol. 2008, 10:682-695.
    • (2008) Cell. Microbiol. , vol.10 , pp. 682-695
    • Nigro, G.1
  • 60
    • 77954918305 scopus 로고    scopus 로고
    • Characterization of natural human nucleotide-binding oligomerization domain protein 1 (NOD1) ligands from bacterial culture supernatant for elucidation of immune modulators in the environment
    • Pradipta A.R., et al. Characterization of natural human nucleotide-binding oligomerization domain protein 1 (NOD1) ligands from bacterial culture supernatant for elucidation of immune modulators in the environment. J. Biol. Chem. 2010, 285:23607-23613.
    • (2010) J. Biol. Chem. , vol.285 , pp. 23607-23613
    • Pradipta, A.R.1
  • 61
    • 0020614313 scopus 로고
    • Biological effects of a purified lipopolysaccharide from Bacteroides gingivalis
    • Nair B.C., et al. Biological effects of a purified lipopolysaccharide from Bacteroides gingivalis. J. Periodontal Res. 1983, 18:40-49.
    • (1983) J. Periodontal Res. , vol.18 , pp. 40-49
    • Nair, B.C.1
  • 62
    • 0021303413 scopus 로고
    • The bone resorbing activities in tissue culture of lipopolysaccharides from the bacteria Actinobacillus actinomycetemcomitans, Bacteroides gingivalis and Capnocytophaga ochracea isolated from human mouths
    • Lino Y., et al. The bone resorbing activities in tissue culture of lipopolysaccharides from the bacteria Actinobacillus actinomycetemcomitans, Bacteroides gingivalis and Capnocytophaga ochracea isolated from human mouths. Arch. Oral Biol. 1984, 29:59-63.
    • (1984) Arch. Oral Biol. , vol.29 , pp. 59-63
    • Lino, Y.1
  • 63
    • 84875818662 scopus 로고    scopus 로고
    • Innate immunomodulation by lipophilic termini of lipopolysaccharide; synthesis of lipid As from Porphyromonas gingivalis and other bacteria and their immunomodulative responses
    • Fujimoto Y., et al. Innate immunomodulation by lipophilic termini of lipopolysaccharide; synthesis of lipid As from Porphyromonas gingivalis and other bacteria and their immunomodulative responses. Mol. Biosyst. 2013, 9:987-996.
    • (2013) Mol. Biosyst. , vol.9 , pp. 987-996
    • Fujimoto, Y.1
  • 64
    • 33845462504 scopus 로고    scopus 로고
    • Cutting edge: TLR2 is required for the innate response to Porphyromonas gingivalis: activation leads to bacterial persistence and TLR2 deficiency attenuates induced alveolar bone resorption
    • Burns E., et al. Cutting edge: TLR2 is required for the innate response to Porphyromonas gingivalis: activation leads to bacterial persistence and TLR2 deficiency attenuates induced alveolar bone resorption. J. Immunol. 2006, 177:8296-8300.
    • (2006) J. Immunol. , vol.177 , pp. 8296-8300
    • Burns, E.1
  • 65
    • 7944220803 scopus 로고    scopus 로고
    • Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition
    • Travassos L.H., et al. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep. 2004, 5:1000-1006.
    • (2004) EMBO Rep. , vol.5 , pp. 1000-1006
    • Travassos, L.H.1
  • 66
    • 0038824980 scopus 로고    scopus 로고
    • An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid
    • Chamaillard M., et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 2003, 4:702-707.
    • (2003) Nat. Immunol. , vol.4 , pp. 702-707
    • Chamaillard, M.1
  • 67
    • 0032707516 scopus 로고    scopus 로고
    • Complement-resistance mechanisms of bacteria
    • Rautemaa R., et al. Complement-resistance mechanisms of bacteria. Microbes Infect. 1999, 1:785-794.
    • (1999) Microbes Infect. , vol.1 , pp. 785-794
    • Rautemaa, R.1
  • 68
    • 19444368186 scopus 로고    scopus 로고
    • Actinobacillus actinomycetemcomitans-induced periodontal disease in mice: patterns of cytokine, chemokine, and chemokine receptor expression and leukocyte migration
    • Garlet G.P., et al. Actinobacillus actinomycetemcomitans-induced periodontal disease in mice: patterns of cytokine, chemokine, and chemokine receptor expression and leukocyte migration. Microbes Infect. 2005, 7:738-747.
    • (2005) Microbes Infect. , vol.7 , pp. 738-747
    • Garlet, G.P.1
  • 69
    • 32344438258 scopus 로고    scopus 로고
    • Characterization of leukotoxin from a clinical strain of Actinobacillus actinomycetemcomitans
    • Diaz R., et al. Characterization of leukotoxin from a clinical strain of Actinobacillus actinomycetemcomitans. Microb. Pathog. 2006, 40:48-55.
    • (2006) Microb. Pathog. , vol.40 , pp. 48-55
    • Diaz, R.1
  • 70
    • 84863826834 scopus 로고    scopus 로고
    • Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen
    • Bostanci N., Belibasakis G.N. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS. Microbiol. Lett. 2012, 333:1-9.
    • (2012) FEMS. Microbiol. Lett. , vol.333 , pp. 1-9
    • Bostanci, N.1    Belibasakis, G.N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.