메뉴 건너뛰기




Volumn 52, Issue 7, 2014, Pages 3774-3787

Unsupervised feature selection using geometrical measures in prototype space for hyperspectral imagery

Author keywords

Hyperspectral imagery (HSI); optimal feature size; prototype space (PS); Unsupervised feature selection (FS)

Indexed keywords

REMOTE SENSING; SPECTROSCOPY;

EID: 84896388438     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2013.2275831     Document Type: Article
Times cited : (41)

References (52)
  • 1
    • 2642530204 scopus 로고    scopus 로고
    • Nonparametric weighted feature extractionfor classification
    • May
    • B.-C. Kuo and D. A. Landgrebe, "Nonparametric weighted feature extractionfor classification," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 5,pp. 1096-1105, May 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.5 , pp. 1096-1105
    • Kuo, B.-C.1    Landgrebe, D.A.2
  • 2
    • 79958706631 scopus 로고    scopus 로고
    • Unsupervised hyperspectral unmixing
    • Univ. Technica De Lisbon, Lisbon, Portugal
    • J. Nascimento, "Unsupervised Hyperspectral Unmixing Ph.D. dissertation,Univ. Technica De Lisbon, Lisbon, Portugal, 2006.
    • (2006) Ph.D. Dissertation
    • Nascimento, J.1
  • 3
    • 84861193110 scopus 로고    scopus 로고
    • Improving theSVDD approach to hyperspectral image classification
    • Jul.
    • S. Khazai, A. Safari, B. Mojaradi, and S. Homayouni, " Improving theSVDD approach to hyperspectral image classification IEEE Geosci.Remote Sens. Lett., vol. 9, no. 4, pp. 594-598, Jul. 2012.
    • (2012) IEEE Geosci.Remote Sens. Lett. , vol.9 , Issue.4 , pp. 594-598
    • Khazai, S.1    Safari, A.2    Mojaradi, B.3    Homayouni, S.4
  • 4
    • 17644371466 scopus 로고    scopus 로고
    • Hyperspectral image processingfor automatic target detection applications
    • D.Manolakis, D.Marden, and G. A. Shaw, " Hyperspectral image processingfor automatic target detection applications," Lincoln Lab. J., vol. 14,no. 1, pp. 79-116, 2003.
    • (2003) Lincoln Lab. J. , vol.14 , Issue.1 , pp. 79-116
    • Manolakis, D.1    Marden, D.2    Shaw, G.A.3
  • 6
    • 33846636871 scopus 로고    scopus 로고
    • Extraction of spectral channels from hyperspectral images for classification purposes
    • DOI 10.1109/TGRS.2006.886177
    • S. B. Serpico and G.Moserd, "Extraction of spectral channels from hyperspectralimages for classification purposes," IEEE Trans. Geosci. RemoteSens., vol. 45, no. 2, pp. 484-495, Feb. 2007. (Pubitemid 46183043)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.2 , pp. 484-495
    • Serpico, S.B.1    Moser, G.2
  • 7
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • DOI 10.1016/S0031-3203(99)00041-2
    • M. Kudo and J. Sklansky, "Comparison of algorithms that select featuresfor pattern classifiers," Pattern Recognit., vol. 33, no. 1, pp. 25-41,Jan. 2000. (Pubitemid 32081876)
    • (2000) Pattern Recognition , vol.33 , Issue.1 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 9
    • 38149024863 scopus 로고    scopus 로고
    • Comparisonof unsupervised band selection methods for hyperspectral imaging
    • Girona, Spain
    • A.Martnez-Us, F. Pla, J. M. Sotoca, and P. Garca-Sevilla "Comparisonof unsupervised band selection methods for hyperspectral imaging inProc. IbPRIA, Girona, Spain, 2007, vol. 4477, pp. 30-38.
    • (2007) Proc. IbPRIA , vol.4477 , pp. 30-38
    • Martnez-us, A.1    Pla, F.2    Sotoca, J.M.3    Garca-Sevilla, P.4
  • 10
    • 55649124564 scopus 로고    scopus 로고
    • A similarity-based unsupervised band selection orhyperspectral image analysis
    • Oct.
    • Q. Du and H. Yang, "A similarity-based unsupervised band selection forhyperspectral image analysis IEEE Geosci. Remote Sens. Lett., vol. 5,no. 4, pp. 564-568, Oct. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.4 , pp. 564-568
    • Du, Q.1    Yang, H.2
  • 11
    • 11144266508 scopus 로고    scopus 로고
    • Introduction
    • 2nd ed.New York, NY, USA: Springer- Verlag
    • I. T. Jolliffe, "Introduction in Principal Component Analysis, 2nd ed.New York, NY, USA: Springer-Verlag, 2002, pp. 1-9.
    • (2002) Principal Component Analysis , pp. 1-9
    • Jolliffe, I.T.1
  • 12
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • DOI 10.1016/S0893-6080(00)00026-5, PII S0893608000000265
    • A. Hyvarinen and E. Oja, "Independent component analysis: Algorithmsand applications," Neural Netw., vol. 13, no. 4 5, pp. 411-430,Jun. 2000. (Pubitemid 30447427)
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 13
    • 33846627768 scopus 로고    scopus 로고
    • Unsupervised linear feature-extraction methods and their effects in the classification of high-dimensional data
    • DOI 10.1109/TGRS.2006.885412
    • L. O. Jimenez-Rodriguez, E. Arzuaga-Cruz, and M. Velez-Reyes "Unsupervisedlinear feature-extraction methods and their effects in theclassification of high-dimensional data IEEE Trans. Geosci. RemoteSens., vol. 45, no. 2, pp. 469-483, Feb. 2007. (Pubitemid 46183042)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.2 , pp. 469-483
    • Jimenez-Rodriguez, L.O.1    Arzuaga-Cruz, E.2    Velez-Reyes, M.3
  • 14
    • 0023854011 scopus 로고
    • Transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • DOI 10.1109/36.3001
    • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, " A transformationfor ordering multispectral data in terms of image quality with implicationsfor noise removal IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1,pp. 65-74, Jan. 1988. (Pubitemid 18596008)
    • (1988) IEEE Transactions on Geoscience and Remote Sensing , vol.26 , Issue.1 , pp. 65-74
    • Green Andrew, A.1    Berman Mark2    Switzer Paul3    Craig Maurice, D.4
  • 15
    • 0037934716 scopus 로고    scopus 로고
    • Automatic reductionof hyperspectral imagery using wavelet spectral analysis
    • Apr.
    • S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, " Automatic reductionof hyperspectral imagery using wavelet spectral analysis," IEEE Trans.Geosci. Remote Sens., vol. 41, no. 4, pp. 863-871, Apr. 2003.
    • (2003) IEEE Trans.Geosci. Remote Sens. , vol.41 , Issue.4 , pp. 863-871
    • Kaewpijit, S.1    Le Moigne, J.2    El-Ghazawi, T.3
  • 16
    • 70350153353 scopus 로고    scopus 로고
    • An adaptive mean-shift analysis approach forobject extraction and classification from urban hyperspectral imagery
    • Dec.
    • X. Huang and L. Zhang, "An adaptive mean-shift analysis approach forobject extraction and classification from urban hyperspectral imagery,"IEEE Trans. Geosci. Remote Sens., vol. 46, no. 12, pp. 4173-4185,Dec. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.12 , pp. 4173-4185
    • Huang, X.1    Zhang, L.2
  • 17
    • 75749152522 scopus 로고    scopus 로고
    • Object-oriented subspace analysis for airbornehyperspectral remote sensing imagery
    • Jan.
    • L. Zhang and X. Huang, "Object-oriented subspace analysis for airbornehyperspectral remote sensing imagery," Neurocomputing, vol. 73, no. 4- 6,pp. 927-936, Jan. 2010.
    • (2010) Neurocomputing , vol.73 , Issue.4-6 , pp. 927-936
    • Zhang, L.1    Huang, X.2
  • 18
    • 84896402198 scopus 로고
    • Random vectors and their properties
    • 2nd ed. New York, NY, USA: Springer- Verlag
    • K. Fukunaga, "Random vectors and their properties in Introduction toStatistical Pattern Recognition, 2nd ed. New York, NY, USA: Springer-Verlag, 1990, pp. 11-50.
    • (1990) Introduction ToStatistical Pattern Recognition , pp. 11-50
    • Fukunaga, K.1
  • 19
    • 34548523848 scopus 로고    scopus 로고
    • Feature selection
    • 2nd ed. Athens, Greece: Dept. Informat. Telecommun.,Univ. Athens
    • S. Theodoridis and K. Koutroumbas, "Feature selection," in PatternRecognition, 2nd ed. Athens, Greece: Dept. Informat. Telecommun.,Univ. Athens, 2003, pp. 163-205.
    • (2003) PatternRecognition , pp. 163-205
    • Theodoridis, S.1    Koutroumbas, K.2
  • 21
    • 33750590333 scopus 로고    scopus 로고
    • Band selection for hyperspectral image classification using mutual information
    • DOI 10.1109/LGRS.2006.878240, 1715309
    • B. Guo, S. R. Gunn, R. I. Damper, and J. D. B. Nelson, " Band selectionfor hyperspectral image classification using mutual information IEEEGeosci. Remote Sens. Lett., vol. 3, no. 4, pp. 522-526, Oct. 2006. (Pubitemid 44679664)
    • (2006) IEEE Geoscience and Remote Sensing Letters , vol.3 , Issue.4 , pp. 522-526
    • Guo, B.1    Gunn, S.R.2    Damper, R.I.3    Nelson, J.D.B.4
  • 22
    • 0036522403 scopus 로고    scopus 로고
    • Unsupervised feature selectionusing feature similarity
    • Mar.
    • P. Mitra, C. A. Murthy, and S. K. Pal, "Unsupervised feature selectionusing feature similarity IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,no. 3, pp. 301-312, Mar. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.3 , pp. 301-312
    • Mitra, P.1    Murthy, C.A.2    Pal, S.K.3
  • 23
    • 84928746885 scopus 로고
    • Introduction to feature selection and extraction
    • Englewood Cliffs,NJ, USA: Prentice-Hall ch. 5
    • P. A. Devijver and J. Kittler, "Introduction to feature selection and extraction,"in Pattern Recognition: A Statistical Approach. Englewood Cliffs,NJ, USA: Prentice-Hall, 1982, ch. 5.
    • (1982) Pattern Recognition: A Statistical Approach
    • Devijver, P.A.1    Kittler, J.2
  • 24
    • 0033224770 scopus 로고    scopus 로고
    • Joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification
    • DOI 10.1109/36.803411
    • C.-I. Chang, Q. Du, T.-L. Sun, and M. L. G. Althouse, " A joint bandprioritization and band decorrelation approach to band selection for hyperspectralimage classification IEEE Trans. Geosci. Remote Sens., vol. 37,no. 6, pp. 2631-2641, Nov. 1999. (Pubitemid 30519596)
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , Issue.6 , pp. 2631-2641
    • Chang, C.-I.1    Du, Q.2    Sun, T.-L.3    Althouse, M.L.G.4
  • 26
    • 78650922770 scopus 로고    scopus 로고
    • Feature extraction and selectionhybrid algorithm for hyperspectral imagery classification
    • Honolulu, HI, USA
    • S. Jia, Y. Qian, J. Li, W. Liu, and Z. Ji, "Feature extraction and selectionhybrid algorithm for hyperspectral imagery classification," in Proc. IEEEIntern. Geosci. Remote Sens. Symp., Honolulu, HI, USA, 2010, pp. 72-75.
    • (2010) Proc. IEEEIntern. Geosci. Remote Sens. Symp. , pp. 72-75
    • Jia, S.1    Qian, Y.2    Li, J.3    Liu, W.4    Ji, Z.5
  • 27
    • 0032155316 scopus 로고    scopus 로고
    • Unsupervised feature selection using a neuro-fuzzy approach
    • PII S016786559800083X
    • J. Basak, R. K. De, and S. K. Pal, "Unsupervised feature selection using aneuro-fuzzy approach," Pattern Recognit. Lett., vol. 19, no. 11, pp. 997-1006, Sep. 1998. (Pubitemid 128426764)
    • (1998) Pattern Recognition Letters , vol.19 , Issue.11 , pp. 997-1006
    • Basak, J.1    De, R.K.2    Pal, S.K.3
  • 28
    • 34548033746 scopus 로고    scopus 로고
    • Fuzzy feature selection based on min-max learning rule and extension matrix
    • DOI 10.1016/j.patcog.2007.06.007, PII S0031320307002725
    • Y. Li and Z. F. Wu, "Fuzzy feature selection based on min-max learningrule and extension matrix," Pattern Recognit., vol. 41, no. 1, pp. 217-226,Jan. 2008. (Pubitemid 47284220)
    • (2008) Pattern Recognition , vol.41 , Issue.1 , pp. 217-226
    • Li, Y.1    Wu, Z.-F.2
  • 30
    • 36349016757 scopus 로고    scopus 로고
    • Dimensionality reduction based on clonal selection for hyperspectral imagery
    • DOI 10.1109/TGRS.2007.905311
    • L. Zhang, Y. Zhong, B. Huang, J. Gong, and P. Li, " Dimensionality reductionbased on clonal selection for hyperspectral imagery IEEE Trans.Geosci. Remote Sens., vol. 45, no. 12, pp. 4172-4186, Dec. 2007. (Pubitemid 350157849)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.12 , pp. 4172-4186
    • Zhang, L.1    Zhong, Y.2    Huang, B.3    Gong, J.4    Li, P.5
  • 31
    • 79955524409 scopus 로고    scopus 로고
    • BandClust: An unsupervisedband reduction method for hyperspectral remote sensing
    • May 2011
    • C. Cariou, K. Chehdi, and S. Le Moan, "BandClust: An unsupervisedband reduction method for hyperspectral remote sensing IEEE Geosci.Remote Sens. Lett., vol. 8, no. 3, pp. 565-569, May 2011.
    • IEEE Geosci.Remote Sens. Lett. , vol.8 , Issue.3 , pp. 565-569
    • Cariou, C.1    Chehdi, K.2    Le Moan, S.3
  • 32
    • 79957637495 scopus 로고    scopus 로고
    • Unsupervised band selection for hyperspectralimage analysis
    • Q. Du and H. Yang, "Unsupervised band selection for hyperspectralimage analysis," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2007,pp. 282-285.
    • (2007) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 282-285
    • Du, Q.1    Yang, H.2
  • 33
    • 34247394279 scopus 로고    scopus 로고
    • Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery
    • DOI 10.1109/LGRS.2006.890540
    • X. Huang, L. Zhang, and P. Li, "Classification and extraction of spatialfeatures in urban areas using high resolution multispectral imagery IEEEGeosci. Remote Sens. Lett., vol. 4, no. 2, pp. 260-264, Apr. 2007. (Pubitemid 46645144)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.2 , pp. 260-264
    • Huang, X.1    Zhang, L.2    Li, P.3
  • 35
    • 84877311546 scopus 로고    scopus 로고
    • Classification bydiagnosing all absorption features (CDAF) for the most abundant mineralsin airborne hyperspectral images
    • Nov. [Online]. Available:
    • M. R. Mobasheri and M. Ghamary Asl. (2011, Nov.). Classification bydiagnosing all absorption features (CDAF) for the most abundant mineralsin airborne hyperspectral images. EURASIP J. Adv. Signal Process. [Online]. 2011, p. 102. Available: http://asp.eurasipjournals.com/content/pdf/1687-6180-2011- 102.pdf
    • (2011) EURASIP J. Adv. Signal Process , pp. 102
    • Mobasheri, M.R.1    Ghamary, A.M.2
  • 36
    • 33846570487 scopus 로고    scopus 로고
    • A novel geometry-based feature-selection technique for hyperspectral imagery
    • DOI 10.1109/LGRS.2006.887142
    • L.Wang, X. Jia, and Y. Zhang, "A novel geometry-based feature-selectiontechnique for hyperspectral imagery," IEEE Geosci. Remote Sens. Lett.,vol. 4, no. 1, pp. 171-175, Jan. 2007. (Pubitemid 46180279)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.1 , pp. 171-175
    • Wang, L.1    Jia, X.2    Zhang, Y.3
  • 37
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral endmemberdetermination in hyperspectral data
    • Denver, CO, USA
    • M. E.Winter, "N-FINDR: An algorithm for fast autonomous spectral endmemberdetermination in hyperspectral data," in Proc. SPIE-Im agingSpectrom. V, Denver, CO, USA, 1999, vol. 3753, pp. 266-275.
    • (1999) Proc. SPIE-ImagingSpectrom. V , vol.3753 , pp. 266-275
    • Winter, M.E.1
  • 39
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. C. Heinz and C.-I. Chang, "Fully constrained least squares linear spectralmixture analysis method for material quantification in hyperspectralimagery IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545,Mar. 2001. (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 40
    • 77950955497 scopus 로고    scopus 로고
    • Unsupervised hyperspectral band selection usingparallel processing
    • H. Yang and Q. Du, "Unsupervised hyperspectral band selection usingparallel processing," in Proc. IEEE Int. Geosci. Remote Sens. Symp.,2009, vol. 5, pp. V-80-V-83.
    • (2009) Proc. IEEE Int. Geosci. Remote Sens. Symp. , vol.5 , pp. 80-83
    • Yang, H.1    Du, Q.2
  • 41
    • 80052333825 scopus 로고    scopus 로고
    • Unsupervised hyperspectral band selectionusing graphics processing units
    • Sep.
    • H. Yang, Q. Du, and G. Chen, "Unsupervised hyperspectral band selectionusing graphics processing units," IEEE J. Sel. Topics Appl. Earth Observ.,vol. 4, no. 3, pp. 660-668, Sep. 2011.
    • (2011) IEEE J. Sel. Topics Appl. Earth Observ. , vol.4 , Issue.3 , pp. 660-668
    • Yang, H.1    Du, Q.2    Chen, G.3
  • 44
    • 84896403518 scopus 로고    scopus 로고
    • Jul. [Online]. Available:
    • Jul. 2013. [Online]. Available: https://engineering.purdue.edu/~biehl/ MultiSpec/hyperspectral.html
    • (2013)
  • 45
    • 84896402932 scopus 로고    scopus 로고
    • Jul. [Online]. Available:
    • Jul. 2013. [Online]. Available: www.csr.utexas.edu/hyperspectral/data/ Botswana
    • (2013)
  • 46
    • 33750840727 scopus 로고    scopus 로고
    • Exploiting class hierarchies for knowledge transfer in hyperspectral data
    • DOI 10.1109/TGRS.2006.878442, 1717735
    • S. Rajan, J. Ghosh, and M. M. Crawford, "Exploiting class hierarchies forknowledge transfer in hyperspectral data IEEE Trans. Geosci. RemoteSens., vol. 44, no. 11, pp. 3408-3417, Nov. 2006. (Pubitemid 44711682)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.11 , pp. 3408-3417
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 47
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normalityimplicit in the analysis of variance
    • Dec.
    • M. Friedman, "The use of ranks to avoid the assumption of normalityimplicit in the analysis of variance " J. Amer. Stat. Assoc., vol. 32, no. 200,pp. 675-701, Dec. 1937.
    • (1937) J. Amer. Stat. Assoc. , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1
  • 48
    • 0001837148 scopus 로고
    • Comparison of alternative tests of significance for theproblem of m rankings
    • Mar.
    • M. Friedman, "Comparison of alternative tests of significance for theproblem of m rankings" Ann. Math. Stat., vol. 11, no. 1, pp. 86-92,Mar. 1940.
    • (1940) Ann. Math. Stat. , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 49
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signalsources in hyperspectral imagery
    • Mar.
    • C.-I. Chang and Q. Du, "Estimation of number of spectrally distinct signalsources in hyperspectral imagery IEEE Trans. Geosci. Remote Sens.,vol. 42, no. 3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 50
    • 0030186112 scopus 로고    scopus 로고
    • Reliably estimating the noise in AVIRIS hyperspectralimagers
    • Jul.
    • R. Roger and J. Arnold, "Reliably estimating the noise in AVIRIS hyperspectralimagers," Int. J. Remote Sens., vol. 17, no. 10, pp. 1951-1962,Jul. 1996.
    • (1996) Int. J. Remote Sens. , vol.17 , Issue.10 , pp. 1951-1962
    • Roger, R.1    Arnold, J.2
  • 51
    • 84896387719 scopus 로고    scopus 로고
    • Jul. [Online]. Available:
    • Jul. 2013. [Online]. Available: http://www.lx.it.pt/~bioucas/code/demo- HySime.zip
    • (2013)
  • 52
    • 84896405306 scopus 로고    scopus 로고
    • Jul. [Online]. Available:
    • Jul. 2013. [Online]. Available: http://speclab.cr.usgs.gov/PAPERS/ cuprite.gr.truth.1992/swayze.1992.html
    • (2013)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.