-
2
-
-
0034069495
-
Gene ontology: Tool for the unification of biology
-
M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, et al. Gene ontology: tool for the unification of biology. Nature Genetics, 25(1):25, 2000.
-
(2000)
Nature Genetics
, vol.25
, Issue.1
, pp. 25
-
-
Ashburner, M.1
Ball, C.A.2
Blake, J.A.3
Botstein, D.4
Butler, H.5
Cherry, J.M.6
Davis, A.P.7
Dolinski, K.8
Dwight, S.S.9
Eppig, J.T.10
-
4
-
-
85161973596
-
Multilabel multiple kernel learning by stochastic approximation: Application to visual object recognition
-
S.S. Bucak, R. Jin, and A.K. Jain. Multilabel multiple kernel learning by stochastic approximation: Application to visual object recognition. Advances in Neural Information Processing Systems, 24:325-333, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, vol.24
, pp. 325-333
-
-
Bucak, S.S.1
Jin, R.2
Jain, A.K.3
-
5
-
-
84865223440
-
Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference
-
N. Cesa-Bianchi, M. Re, and G. Valentini. Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference. Machine Learning, 88(1-2):209-241, 2012.
-
(2012)
Machine Learning
, vol.88
, Issue.1-2
, pp. 209-241
-
-
Cesa-Bianchi, N.1
Re, M.2
Valentini, G.3
-
7
-
-
84858738634
-
Efficient and accurate lp-norm multiple kernel learning
-
M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K.R. Müller, and A. Zien. Efficient and accurate lp-norm multiple kernel learning. In 22th Advances in Neural Information Processing Systems, pages 997-1005, 2009.
-
(2009)
22th Advances in Neural Information Processing Systems
, pp. 997-1005
-
-
Kloft, M.1
Brefeld, U.2
Sonnenburg, S.3
Laskov, P.4
Müller, K.R.5
Zien, A.6
-
8
-
-
84873289445
-
Transductive multi-label learning via label set propagation
-
X. Kong, M. Ng, and Z. Zhou. Transductive multi-label learning via label set propagation. IEEE Transactions on Knowledge and Data Engineering, 25(3):704-719, 2013.
-
(2013)
IEEE Transactions on Knowledge and Data Engineering
, vol.25
, Issue.3
, pp. 704-719
-
-
Kong, X.1
Ng, M.2
Zhou, Z.3
-
9
-
-
8844263749
-
A statistical framework for genomic data fusion
-
G.R.G. Lanckriet, T. De Bie, N. Cristianini, M.I. Jordan, and W.S. Noble. A statistical framework for genomic data fusion. Bioinformatics, 20(16):2626-2635, 2004.
-
(2004)
Bioinformatics
, vol.20
, Issue.16
, pp. 2626-2635
-
-
Lanckriet, G.R.G.1
De Bie, T.2
Cristianini, N.3
Jordan, M.I.4
Noble, W.S.5
-
10
-
-
84883575579
-
Fast string kernels using inexact matching for protein sequences
-
C. Leslie and R. Kuang. Fast string kernels using inexact matching for protein sequences. The Journal of Machine Learning Research, 5:1435-1455, 2004.
-
(2004)
The Journal of Machine Learning Research
, vol.5
, pp. 1435-1455
-
-
Leslie, C.1
Kuang, R.2
-
11
-
-
77954309042
-
Fast integration of heterogeneous data sources for predicting gene function with limited annotation
-
S. Mostafavi and Q. Morris. Fast integration of heterogeneous data sources for predicting gene function with limited annotation. Bioinformatics, 26(14):1759-1765, 2010.
-
(2010)
Bioinformatics
, vol.26
, Issue.14
, pp. 1759-1765
-
-
Mostafavi, S.1
Morris, Q.2
-
12
-
-
47549107689
-
Genemania: A real-time multiple association network integration algorithm for predicting gene function
-
S. Mostafavi, D. Ray, D. Warde- Farley, C. Grouios, and Q. Morris. Genemania: a real-time multiple association network integration algorithm for predicting gene function. Genome Biology, 9(Suppl 1):S4, 2008.
-
(2008)
Genome Biology
, vol.9
, Issue.SUPPL. 1
-
-
Mostafavi, S.1
Ray, D.2
Warde-Farley, D.3
Grouios, C.4
Morris, Q.5
-
15
-
-
27544435126
-
Fast protein classification with multiple networks
-
K. Tsuda, H.J. Shin, and B. Schölkopf. Fast protein classification with multiple networks. Bioinformatics, 21(suppl 2):ii59, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.SUPPL. 2
-
-
Tsuda, K.1
Shin, H.J.2
Schölkopf, B.3
-
16
-
-
67249090373
-
Unified video annotation via multigraph learning
-
M. Wang, X.S. Hua, R. Hong, J. Tang, G.J. Qi, and Y. Song. Unified video annotation via multigraph learning. IEEE Transactions on Circuits and Systems for Video Technology, 19(5):733-746, 2009.
-
(2009)
IEEE Transactions on Circuits and Systems for Video Technology
, vol.19
, Issue.5
, pp. 733-746
-
-
Wang, M.1
Hua, X.S.2
Hong, R.3
Tang, J.4
Qi, G.J.5
Song, Y.6
-
17
-
-
25144481906
-
Semi-supervised protein classification using cluster kernels
-
J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff, and W.S. Noble. Semi-supervised protein classification using cluster kernels. Bioinformatics, 21(15):3241-3247, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.15
, pp. 3241-3247
-
-
Weston, J.1
Leslie, C.2
Ie, E.3
Zhou, D.4
Elisseeff, A.5
Noble, W.S.6
-
18
-
-
84866015736
-
Transductive multi-label ensemble classification for protein function prediction
-
ACM
-
G. Yu, C. Domeniconi, H. Rangwala, G. Zhang, and Z. Yu. Transductive multi-label ensemble classification for protein function prediction. In 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1077-1085. ACM, 2012.
-
(2012)
18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 1077-1085
-
-
Yu, G.1
Domeniconi, C.2
Rangwala, H.3
Zhang, G.4
Yu, Z.5
-
19
-
-
84899006908
-
Learning with local and global consistency
-
D. Zhou, O. Bousquet, T.N. Lal, J. Weston, and B. Schölkopf. Learning with local and global consistency. Advances in Neural Information Processing Systems, 16:321-328, 2004.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 321-328
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.N.3
Weston, J.4
Schölkopf, B.5
|