-
2
-
-
0036090228
-
Regulatory mechanisms of osteoblast and osteoclast differentiation
-
DOI 10.1034/j.1601-0825.2002.01829.x
-
Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 2002;8(3):147-59. (Pubitemid 34535063)
-
(2002)
Oral Diseases
, vol.8
, Issue.3
, pp. 147-159
-
-
Katagiri, T.1
Takahashi, N.2
-
3
-
-
0028035150
-
Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity
-
DOI 10.1002/jcb.240560312
-
Martin TJ, Ng KW. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem. 1994;56(3):357-66. doi:10.1002/jcb.240560312. (Pubitemid 24360054)
-
(1994)
Journal of Cellular Biochemistry
, vol.56
, Issue.3
, pp. 357-366
-
-
Martin, T.J.1
Ng, K.W.2
-
4
-
-
0033568341
-
RANK is essential for osteoclast and lymph node development
-
DOI 10.1101/gad.13.18.2412
-
Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13(18):2412-24. (Pubitemid 29453612)
-
(1999)
Genes and Development
, vol.13
, Issue.18
, pp. 2412-2424
-
-
Dougall, W.C.1
Glaccum, M.2
Charrier, K.3
Rohrbach, K.4
Brasel, K.5
De Smedt, T.6
Daro, E.7
Smith, J.8
Tometsko, M.E.9
Maliszewski, C.R.10
Armstrong, A.11
Shen, V.12
Bain, S.13
Cosman, D.14
Anderson, D.15
Morrissey, P.J.16
Peschon, J.J.17
Schuh, J.18
-
5
-
-
0033611467
-
OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis
-
Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397(6717):315-23.
-
(1999)
Nature
, vol.397
, Issue.6717
, pp. 315-323
-
-
Kong, Y.Y.1
Yoshida, H.2
Sarosi, I.3
Tan, H.L.4
Timms, E.5
Capparelli, C.6
-
6
-
-
0038731186
-
Delivering the kiss of death
-
DOI 10.1038/ni0503-399
-
Trambas CM, Griffiths GM. Delivering the kiss of death. Nat Immunol. 2003;4(5):399-403. (Pubitemid 36592428)
-
(2003)
Nature Immunology
, vol.4
, Issue.5
, pp. 399-403
-
-
Trambas, C.M.1
Griffiths, G.M.2
-
7
-
-
3342982829
-
A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women
-
DOI 10.1359/JBMR.040305
-
Bekker PJ, Holloway DL, Rasmussen AS, Murphy R, Martin SW, Leese PT, et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res. 2004;19(7):1059-66. doi:10.1359/JBMR.040305. (Pubitemid 41110556)
-
(2004)
Journal of Bone and Mineral Research
, vol.19
, Issue.7
, pp. 1059-1066
-
-
Bekker, P.J.1
Holloway, D.L.2
Rasmussen, A.S.3
Murphy, R.4
Martin, S.W.5
Leese, P.T.6
Holmes, G.B.7
Dunstan, C.R.8
DePaoli, A.M.9
-
8
-
-
84876312627
-
Denosumab: Recent update in postmenopausal osteoporosis
-
Silva I, Branco JC. Denosumab: recent update in postmenopausal osteoporosis. Acta Reumatologica Portuguesa. 2012;37(4):302-13.
-
(2012)
Acta Reumatologica Portuguesa
, vol.37
, Issue.4
, pp. 302-313
-
-
Silva, I.1
Branco, J.C.2
-
9
-
-
38749105490
-
Two-year treatment with denosumab (AMG 162) in a randomized phase 2 study of postmenopausal women with low BMD
-
DOI 10.1359/jbmr.070809
-
Lewiecki EM, Miller PD, McClung MR, Cohen SB, Bolognese MA, Liu Y, et al. Two-year treatment with denosumab (AMG 162) in a randomized phase 2 study of postmenopausal women with low BMD. J Bone Miner Res. 2007;22(12):1832-41. (Pubitemid 351229299)
-
(2007)
Journal of Bone and Mineral Research
, vol.22
, Issue.12
, pp. 1832-1841
-
-
Lewiecki, E.M.1
Miller, P.D.2
McClung, M.R.3
Cohen, S.B.4
Bolognese, M.A.5
Liu, Y.6
Wang, A.7
Siddhanti, S.8
Fitzpatrick, L.A.9
-
10
-
-
18744366041
-
Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts
-
DOI 10.1016/S1534-5807(02)00369-6
-
Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;3(6):889-901. (Pubitemid 35460788)
-
(2002)
Developmental Cell
, vol.3
, Issue.6
, pp. 889-901
-
-
Takayanagi, H.1
Kim, S.2
Koga, T.3
Nishina, H.4
Isshiki, M.5
Yoshida, H.6
Saiura, A.7
Isobe, M.8
Yokochi, T.9
Inoue, J.-I.10
Wagner, E.F.11
Mak, T.W.12
Kodama, T.13
Taniguchi, T.14
-
11
-
-
0242607977
-
Signal transduction pathways regulating osteoclast differentiation and function
-
DOI 10.1007/s007740300021
-
Tanaka S, Nakamura I, Inoue J, Oda H, Nakamura K. Signal transduction pathways regulating osteoclast differentiation and function. J Bone Miner Metab. 2003;21(3):123-33. doi:10.1007/s007740300021. (Pubitemid 41184293)
-
(2003)
Journal of Bone and Mineral Metabolism
, vol.21
, Issue.3
, pp. 123-133
-
-
Tanaka, S.1
Nakamura, I.2
Inoue, J.-I.3
Oda, H.4
Nakamura, K.5
-
12
-
-
29244452610
-
2+-promoted Ras inactivator as a possible regulator of RANKL shedding
-
DOI 10.1074/jbc.M507000200
-
Hikita A, Kadono Y, Chikuda H, Fukuda A, Wakeyama H, Yasuda H, et al. Identification of an alternatively spliced variant of Ca2+-promoted Ras inactivator as a possible regulator of RANKL shedding. J Biol Chem. 2005;280(50):41700-6. (Pubitemid 41832232)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.50
, pp. 41700-41706
-
-
Hikita, A.1
Kadono, Y.2
Chikuda, H.3
Fukuda, A.4
Wakeyama, H.5
Yasuda, H.6
Nakamura, K.7
Oda, H.8
Miyazaki, T.9
Tanaka, S.10
-
13
-
-
0032561198
-
The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor
-
DOI 10.1074/jbc.273.43.28355
-
Wong BR, Josien R, Lee SY, Vologodskaia M, Steinman RM, Choi Y. The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J Biol Chem. 1998;273(43): 28355-9. (Pubitemid 28496137)
-
(1998)
Journal of Biological Chemistry
, vol.273
, Issue.43
, pp. 28355-28359
-
-
Wong, B.R.1
Josien, R.2
Lee, S.Y.3
Vologodskaia, M.4
Steinman, R.M.5
Choi, Y.6
-
14
-
-
6544270833
-
Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice
-
DOI 10.1046/j.1365-2443.1999.00265.x
-
Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells. 1999;4(6):353-62. (Pubitemid 29359450)
-
(1999)
Genes to Cells
, vol.4
, Issue.6
, pp. 353-362
-
-
Naito, A.1
Azuma, S.2
Tanaka, S.3
Miyazaki, T.4
Takaki, S.5
Takatsu, K.6
Nakao, K.7
Nakamura, K.8
Katsuki, M.9
Yamamoto, T.10
Inoue, J.-I.11
-
15
-
-
28544452658
-
Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system
-
Tanaka S, Nakamura K, Takahasi N, Suda T. Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev. 2005;208:30-49. doi:10.1111/j.0105-2896.2005. 00327.x. (Pubitemid 41746383)
-
(2005)
Immunological Reviews
, vol.208
, pp. 30-49
-
-
Tanaka, S.1
Nakamura, K.2
Takahasi, N.3
Suda, T.4
-
16
-
-
33750330963
-
Induction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway
-
DOI 10.1016/j.bbrc.2006.10.011, PII S0006291X0602225X
-
Huang H, Chang EJ, Ryu J, Lee ZH, Lee Y, Kim HH. Induction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation ismediated by the p38 signaling pathway. BiochemBiophys Res Commun. 2006;351(1):99-105. (Pubitemid 44635412)
-
(2006)
Biochemical and Biophysical Research Communications
, vol.351
, Issue.1
, pp. 99-105
-
-
Huang, H.1
Chang, E.-J.2
Ryu, J.3
Lee, Z.H.4
Lee, Y.5
Kim, H.-H.6
-
17
-
-
27444437574
-
Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis
-
DOI 10.1074/jbc.M505815200
-
Kim K, Kim JH, Lee J, Jin HM, Lee SH, Fisher DE, et al. Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J Biol Chem. 2005;280(42):35209-16. doi:10.1074/jbc. M505815200. (Pubitemid 41532708)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.42
, pp. 35209-35216
-
-
Kim, K.1
Kim, J.H.2
Lee, J.3
Jin, H.-M.4
Lee, S.-H.5
Fisher, D.E.6
Kook, H.7
Kim, K.K.8
Choi, Y.9
Kim, N.10
-
18
-
-
2942731511
-
Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos
-
DOI 10.1074/jbc.M313973200
-
Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZ, et al. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem. 2004;279(25): 26475-80. doi:10.1074/jbc.M313973200. (Pubitemid 38798801)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.25
, pp. 26475-26480
-
-
Matsuo, K.1
Galson, D.L.2
Zhao, C.3
Peng, L.4
Laplace, C.5
Wang, K.Z.Q.6
Bachler, M.A.7
Amano, H.8
Aburatani, H.9
Ishikawa, H.10
Wagner, E.F.11
-
19
-
-
33646068740
-
NFATc1 regulation of the human beta3 integrin promoter in osteoclast differentiation
-
doi:10.1016/j.gene.2005.12.012
-
Crotti TN, Flannery M, Walsh NC, Fleming JD, Goldring SR, McHugh KP. NFATc1 regulation of the human beta3 integrin promoter in osteoclast differentiation. Gene. 2006;372:92-102. doi:10.1016/j.gene.2005.12.012.
-
(2006)
Gene
, vol.372
, pp. 92-102
-
-
Crotti, T.N.1
Flannery, M.2
Walsh, N.C.3
Fleming, J.D.4
Goldring, S.R.5
McHugh, K.P.6
-
20
-
-
34347367005
-
Osteoclast function is activated by osteoblastic cells through a mechanism involving cell-to-cell contact
-
DOI 10.1210/en.137.5.2187
-
Jimi E, Nakamura I, Amano H, Taguchi Y, Tsurukai T, Tamura M, et al. Osteoclast function is activated by osteoblastic cells through a mechanism involving cell-to-cell contact. Endocrinology. 1996;137(8):2187-90. (Pubitemid 26133995)
-
(1996)
Endocrinology
, vol.137
, Issue.5
, pp. 2187-2190
-
-
Jimi, E.1
Nakamura, I.2
Amano, H.3
Taguchi, Y.4
Tsurukai, T.5
Tamura, M.6
Takahashi, N.7
Suda, T.8
-
21
-
-
0030862166
-
Establishment of an osteocyte-like cell line, MLO-Y4
-
Kato Y, Windle JJ, Koop BA, Mundy GR, Bonewald LF. Establishment of an osteocyte-like cell line, MLO-Y4. J Bone Miner Res. 1997;12(12):2014-23. doi:10.1359/jbmr.1997.12.12.2014. (Pubitemid 27524478)
-
(1997)
Journal of Bone and Mineral Research
, vol.12
, Issue.12
, pp. 2014-2023
-
-
Kato, Y.1
Windle, J.J.2
Koop, B.A.3
Mundy, G.R.4
Bonewald, L.F.5
-
22
-
-
0036828506
-
MLO-Y4 osteocyte-like cells support osteoclast formation and activation
-
Zhao S, Zhang YK, Harris S, Ahuja SS, Bonewald LF. MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J Bone Miner Res. 2002;17(11):2068-79. doi:10.1359/jbmr.2002.17.11.2068. (Pubitemid 35239208)
-
(2002)
Journal of Bone and Mineral Research
, vol.17
, Issue.11
, pp. 2068-2079
-
-
Zhao, S.1
Kato, Y.2
Zhang, Y.3
Harris, S.4
Ahuja, S.S.5
Bonewald, L.F.6
-
23
-
-
80053938104
-
Evidence for osteocyte regulation of bone homeostasis through RANKL expression
-
doi:10.1038/nm.2452. This study showed that osteocytes are the major source of RANKL in physiological osteoclastogenesis
-
•• Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231-4. doi:10.1038/nm.2452. This study showed that osteocytes are the major source of RANKL in physiological osteoclastogenesis.
-
(2011)
Nat Med
, vol.17
, Issue.10
, pp. 1231-1234
-
-
Nakashima, T.1
Hayashi, M.2
Fukunaga, T.3
Kurata, K.4
Oh-Hora, M.5
Feng, J.Q.6
-
24
-
-
80053978532
-
Matrix-embedded cells control osteoclast formation
-
doi:10.1038/nm.2448. This study showed that osteocytes are the major source of RANKL in physiological osteoclastogenesis
-
•• Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17(10):1235-41. doi:10.1038/nm.2448. This study showed that osteocytes are the major source of RANKL in physiological osteoclastogenesis.
-
(2011)
Nat Med
, vol.17
, Issue.10
, pp. 1235-1241
-
-
Xiong, J.1
Onal, M.2
Jilka, R.L.3
Weinstein, R.S.4
Manolagas, S.C.5
O'Brien, C.A.6
-
25
-
-
65549087003
-
Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue
-
doi:10.1359/jbmr.081210
-
Cardoso L, Herman BC, Verborgt O, Laudier D, Majeska RJ, Schaffler MB. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res. 2009;24(4):597-605. doi:10.1359/jbmr.081210.
-
(2009)
J Bone Miner Res
, vol.24
, Issue.4
, pp. 597-605
-
-
Cardoso, L.1
Herman, B.C.2
Verborgt, O.3
Laudier, D.4
Majeska, R.J.5
Schaffler, M.B.6
-
26
-
-
77956404117
-
Activation of bone remodeling after fatigue: Differential response to linear microcracks and diffuse damage
-
doi:10.1016/j.bone.2010.07.006
-
Herman BC, Cardoso L, Majeska RJ, Jepsen KJ, Schaffler MB. Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage. Bone. 2010;47(4):766-72. doi:10.1016/j.bone.2010.07.006.
-
(2010)
Bone
, vol.47
, Issue.4
, pp. 766-772
-
-
Herman, B.C.1
Cardoso, L.2
Majeska, R.J.3
Jepsen, K.J.4
Schaffler, M.B.5
-
27
-
-
34249657953
-
Targeted Ablation of Osteocytes Induces Osteoporosis with Defective Mechanotransduction
-
DOI 10.1016/j.cmet.2007.05.001, PII S1550413107001283
-
Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metabol. 2007;5(6):464-75. doi:10.1016/j.cmet.2007.05. 001. (Pubitemid 46825494)
-
(2007)
Cell Metabolism
, vol.5
, Issue.6
, pp. 464-475
-
-
Tatsumi, S.1
Ishii, K.2
Amizuka, N.3
Li, M.4
Kobayashi, T.5
Kohno, K.6
Ito, M.7
Takeshita, S.8
Ikeda, K.9
-
28
-
-
84859360993
-
Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations
-
doi: 10.1016/j.bone.2012.01.025. This study showed that RANKL/OPG ratio is up-regulated in osteocytes adjacent to the damaged site of bone
-
• Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone. 2012;50(5):1115-22. doi: 10.1016/j.bone.2012.01.025. This study showed that RANKL/OPG ratio is up-regulated in osteocytes adjacent to the damaged site of bone.
-
(2012)
Bone
, vol.50
, Issue.5
, pp. 1115-1122
-
-
Kennedy, O.D.1
Herman, B.C.2
Laudier, D.M.3
Majeska, R.J.4
Sun, H.B.5
Schaffler, M.B.6
-
29
-
-
0030884639
-
The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone
-
DOI 10.1210/jc.82.9.3128
-
Tomkinson A, Reeve J, Shaw RW, Noble BS. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab. 1997;82(9):3128-35. (Pubitemid 27385687)
-
(1997)
Journal of Clinical Endocrinology and Metabolism
, vol.82
, Issue.9
, pp. 3128-3135
-
-
Tomkinson, A.1
Reeve, J.2
Shaw, R.W.3
Noble, B.S.4
-
30
-
-
33644975844
-
Buried alive: How osteoblasts become osteocytes
-
DOI 10.1002/dvdy.20603
-
Franz-Odendaal TA, Hall BK, Witten PE. Buried alive: how osteoblasts become osteocytes. Dev Dyn. 2006;235(1):176-90. doi:10.1002/dvdy.20603. (Pubitemid 46939715)
-
(2006)
Developmental Dynamics
, vol.235
, Issue.1
, pp. 176-190
-
-
Franz-Odendaal, T.A.1
Hall, B.K.2
Witten, P.E.3
-
31
-
-
0035130601
-
A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy
-
DOI 10.1016/S8756-3282(00)00421-X, PII S875632820000421X
-
Kamioka H, Honjo T, Takano-Yamamoto T. A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone. 2001;28(2):145-9. (Pubitemid 32140970)
-
(2001)
Bone
, vol.28
, Issue.2
, pp. 145-149
-
-
Kamioka, H.1
Honjo, T.2
Takano-Yamamoto, T.3
-
32
-
-
84882688846
-
RANKL subcellular trafficking and regulatory mechanisms in osteocytes
-
doi:10.1002/jbmr.1941. This study showed that osteocytes provide RANKL to osteoclast precursors through direct cell-cell interactions
-
• Honma M, Ikebuchi Y, Kariya Y, Hayashi M, Hayashi N, Aoki S, et al. RANKL subcellular trafficking and regulatory mechanisms in osteocytes. J Bone Miner Res. 2013;28(9):1936-49. doi:10.1002/jbmr.1941. This study showed that osteocytes provide RANKL to osteoclast precursors through direct cell-cell interactions.
-
(2013)
J Bone Miner Res
, vol.28
, Issue.9
, pp. 1936-1949
-
-
Honma, M.1
Ikebuchi, Y.2
Kariya, Y.3
Hayashi, M.4
Hayashi, N.5
Aoki, S.6
-
33
-
-
84891079409
-
Establishment of optimized in vitro assay methods for evaluating osteocyte functions
-
doi:10.1007/s00774-013-0555-5
-
Honma M, Ikebuchi Y, Kariya Y, Suzuki H. Establishment of optimized in vitro assay methods for evaluating osteocyte functions. J Bone Miner Metab. 2014. doi:10.1007/s00774-013-0555-5.
-
(2014)
J Bone Miner Metab
-
-
Honma, M.1
Ikebuchi, Y.2
Kariya, Y.3
Suzuki, H.4
-
34
-
-
70349894957
-
Vps33a mediates RANKL storage in secretory lysosomes in osteoblastic cells
-
doi:10.1359/jbmr.090409
-
Kariya Y, Honma M, Aoki S, Chiba A, Suzuki H. Vps33a mediates RANKL storage in secretory lysosomes in osteoblastic cells. J Bone Miner Res. 2009;24(10):1741-52. doi:10.1359/jbmr.090409.
-
(2009)
J Bone Miner Res
, vol.24
, Issue.10
, pp. 1741-1752
-
-
Kariya, Y.1
Honma, M.2
Aoki, S.3
Chiba, A.4
Suzuki, H.5
-
35
-
-
77956839811
-
Function of OPG as a traffic regulator for RANKL is crucial for controlled osteoclastogenesis
-
doi:10.1002/jbmr.89
-
Aoki S, Honma M, Kariya Y, Nakamichi Y, Ninomiya T, Takahashi N, et al. Function of OPG as a traffic regulator for RANKL is crucial for controlled osteoclastogenesis. J Bone Miner Res. 2010;25(9):1907-21. doi:10.1002/jbmr.89.
-
(2010)
J Bone Miner Res
, vol.25
, Issue.9
, pp. 1907-1921
-
-
Aoki, S.1
Honma, M.2
Kariya, Y.3
Nakamichi, Y.4
Ninomiya, T.5
Takahashi, N.6
-
36
-
-
52549126992
-
Regulation of secretory vesicle traffic by Rab small GTPases
-
Fukuda M. Regulation of secretory vesicle traffic by Rab small GTPases. Cell Mol Life Sci. 2008;65(18):2801-13.
-
(2008)
Cell Mol Life Sci
, vol.65
, Issue.18
, pp. 2801-2813
-
-
Fukuda, M.1
-
38
-
-
79953042881
-
Rab27a and Rab27b are involved in stimulation-dependent RANKL release from secretory lysosomes in osteoblastic cells
-
doi:10.1002/jbmr.268
-
Kariya Y, Honma M, Hanamura A, Aoki S, Ninomiya T, Nakamichi Y, et al. Rab27a and Rab27b are involved in stimulation-dependent RANKL release from secretory lysosomes in osteoblastic cells. J Bone Miner Res. 2010. doi:10.1002/jbmr.268.
-
(2010)
J Bone Miner Res
-
-
Kariya, Y.1
Honma, M.2
Hanamura, A.3
Aoki, S.4
Ninomiya, T.5
Nakamichi, Y.6
-
39
-
-
53049100324
-
Elucidation of Rab27 recruitment by its effectors: Structure of Rab27a bound to Exophilin4/Slp2-a
-
Chavas L, Ihara K, Kawasaki M, Torii S, Uejima T, Kato R, et al. Elucidation of Rab27 recruitment by its effectors: structure of Rab27a bound to Exophilin4/Slp2-a. Structure. 2008;16(10): 1468-77.
-
(2008)
Structure
, vol.16
, Issue.10
, pp. 1468-1477
-
-
Chavas, L.1
Ihara, K.2
Kawasaki, M.3
Torii, S.4
Uejima, T.5
Kato, R.6
-
40
-
-
34948826453
-
Rab27a and MyoVa are the primary Mlph interactors regulating melanosome transport in melanocytes
-
DOI 10.1242/jcs.010207
-
Hume AN, Ushakov DS, Tarafder AK, Ferenczi MA, Seabra MC. Rab27a and MyoVa are the primary Mlph interactors regulating melanosome transport in melanocytes. J Cell Sci. 2007;120(Pt 17): 3111-22. (Pubitemid 47517093)
-
(2007)
Journal of Cell Science
, vol.120
, Issue.17
, pp. 3111-3122
-
-
Hume, A.N.1
Ushakov, D.S.2
Tarafder, A.K.3
Ferenczi, M.A.4
Seabra, M.C.5
-
41
-
-
0035911160
-
Rab27a is required for regulated secretion in cytotoxic T lymphocytes
-
Stinchcombe J, Barral D, Mules E, Booth S, Hume A, Machesky L, et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J Cell Biol. 2001;152(4):825-34.
-
(2001)
J Cell Biol
, vol.152
, Issue.4
, pp. 825-834
-
-
Stinchcombe, J.1
Barral, D.2
Mules, E.3
Booth, S.4
Hume, A.5
Machesky, L.6
-
42
-
-
0035655587
-
The immunological synapse of CTL contains a secretory domain and membrane bridges
-
DOI 10.1016/S1074-7613(01)00234-5
-
Stinchcombe JC, Bossi G, Booth S, Griffiths GM. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity. 2001;15(5):751-61. (Pubitemid 34008503)
-
(2001)
Immunity
, vol.15
, Issue.5
, pp. 751-761
-
-
Stinchcombe, J.C.1
Bossi, G.2
Booth, S.3
Griffiths, G.M.4
-
43
-
-
0036073806
-
Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome
-
DOI 10.1172/JCI200215058
-
Barral D, Ramalho J, Anders R, Hume A, Knapton H, Tolmachova T, et al. Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. J Clin Invest. 2002;110(2):247-57. (Pubitemid 34787362)
-
(2002)
Journal of Clinical Investigation
, vol.110
, Issue.2
, pp. 247-257
-
-
Barral, D.C.1
Ramalho, J.S.2
Anders, R.3
Hume, A.N.4
Knapton, H.J.5
Tolmachova, T.6
Collinson, L.M.7
Goulding, D.8
Authi, K.S.9
Seabra, M.C.10
-
44
-
-
33751290691
-
Rab27 and its effectors in secretory granule exocytosis: A novel docking machinery composed of a Rab27.effector complex
-
DOI 10.1042/BST0340691
-
Fukuda M. Rab27 and its effectors in secretory granule exocytosis: a novel dockingmachinery composed of a Rab27.effector complex. Biochem Soc Trans. 2006;34(Pt 5):691-5. (Pubitemid 44796400)
-
(2006)
Biochemical Society Transactions
, vol.34
, Issue.5
, pp. 691-695
-
-
Fukuda, M.1
|